
How to solve this first order linear differential equation?
$
xy' - \dfrac{1}{{x + 1}}y = x \\
y\left( 1 \right) = 0 \;
$
Answer
518.7k+ views
Hint: We have to solve the given first order differential equation. We can observe that the differential equation can be written in the form of $ y' + P\left( x \right)y = Q\left( x \right) $ . To solve such differential equations we use an integrating factor which is given as $ I.F. = {e^{\int {P\left( x \right)dx} }} $ . Here $ P\left( x \right) $ is the same function which is multiple of $ y $ is the given differential equation. We multiply both sides of the differential equation by the integrating factor and further integrate to find the solution. We can then use the given condition \[y\left( 1 \right) = 0\] to find the value of the integrating constant.
Complete step-by-step answer:
We have been given to solve the first order differential equation $ xy' - \dfrac{1}{{x + 1}}y = x $ with the condition \[y\left( 1 \right) = 0\].
The given differential equation can be written as,
$
xy' - \dfrac{1}{{x + 1}}y = x \\
\Rightarrow y' + \left( { - \dfrac{1}{{x\left( {x + 1} \right)}}} \right)y = 1 \;
$
This differential equation is now in the form of $ y' + P\left( x \right)y = Q\left( x \right) $ where $ P\left( x \right) = \left( { - \dfrac{1}{{x\left( {x + 1} \right)}}} \right) $ and $ Q\left( x \right) = 1 $ .
To solve such differential equations we use an integrating factor given as $ I.F. = {e^{\int {P\left( x \right)dx} }} $ .
We can find the $ I.F. $ as,
$ {e^{\int {P\left( x \right)dx} }} = {e^{\int {\left( { - \dfrac{1}{{x\left( {x + 1} \right)}}} \right)dx} }} $
By partial fractions we can write,
$
\left( { - \dfrac{1}{{x\left( {x + 1} \right)}}} \right) = \dfrac{a}{x} + \dfrac{b}{{x + 1}} \\
\Rightarrow - 1 = a\left( {x + 1} \right) + bx \;
$
If $ x = 1 $ , then $ 2a + b = - 1 $
If $ x = 2 $ , then $ 3a + 2b = - 1 $
On solving we get $ a = - 1 $ and $ b = 1 $ .
Thus,
$ {e^{\int {\left( { - \dfrac{1}{{x\left( {x + 1} \right)}}} \right)dx} }} = {e^{\int {\left( { - \dfrac{1}{x} + \dfrac{1}{{\left( {x + 1} \right)}}} \right)dx} }} = {e^{ - \ln x + \ln \left( {x + 1} \right)}} = {e^{\ln \left( {1 + \dfrac{1}{x}} \right)}} = \left( {1 + \dfrac{1}{x}} \right) $
Thus, $ I.F. = \left( {1 + \dfrac{1}{x}} \right) $
We multiply the integrating factor on both sides of the equation and integrate.
$ \Rightarrow \left( {1 + \dfrac{1}{x}} \right)y' + \left( {1 + \dfrac{1}{x}} \right)\left( { - \dfrac{1}{{x\left( {x + 1} \right)}}} \right)y = \left( {1 + \dfrac{1}{x}} \right) $
This can be written as,
$ \Rightarrow \dfrac{{d\left\{ {\left( {1 + \dfrac{1}{x}} \right)y} \right\}}}{{dx}} = \left( {1 + \dfrac{1}{x}} \right) $
Now we integrate both sides.
$
\Rightarrow \int {\dfrac{{d\left\{ {\left( {1 + \dfrac{1}{x}} \right)y} \right\}}}{{dx}}dx} = \int {\left( {1 + \dfrac{1}{x}} \right)dx} \\
\Rightarrow \left( {1 + \dfrac{1}{x}} \right)y = x + \ln x + C \;
$
We can find the value of $ C $ using the condition \[y\left( 1 \right) = 0\].
$
\Rightarrow \left( {1 + 1} \right) \times 0 = 1 + \ln 1 + C \\
\Rightarrow C + 1 = 0 \\
\Rightarrow C = - 1 \;
$
Thus we get,
$ \left( {1 + \dfrac{1}{x}} \right)y = x + \ln x - 1 $
Or we can write the function as,
$ y = \dfrac{{x\left( {x + \ln x - 1} \right)}}{{\left( {x + 1} \right)}} $
So, the correct answer is “ $ y = \dfrac{{x\left( {x + \ln x - 1} \right)}}{{\left( {x + 1} \right)}} $ ”.
Note: We solved the differential equation using the integrating factor. The integrating factor of the form $ I.F. = {e^{\int {P\left( x \right)dx} }} $ is used for the differential equation of the form $ y' + P\left( x \right)y = Q\left( x \right) $ and may not work properly for other forms of differential equation. We have to be careful while following each step in the solution.
Complete step-by-step answer:
We have been given to solve the first order differential equation $ xy' - \dfrac{1}{{x + 1}}y = x $ with the condition \[y\left( 1 \right) = 0\].
The given differential equation can be written as,
$
xy' - \dfrac{1}{{x + 1}}y = x \\
\Rightarrow y' + \left( { - \dfrac{1}{{x\left( {x + 1} \right)}}} \right)y = 1 \;
$
This differential equation is now in the form of $ y' + P\left( x \right)y = Q\left( x \right) $ where $ P\left( x \right) = \left( { - \dfrac{1}{{x\left( {x + 1} \right)}}} \right) $ and $ Q\left( x \right) = 1 $ .
To solve such differential equations we use an integrating factor given as $ I.F. = {e^{\int {P\left( x \right)dx} }} $ .
We can find the $ I.F. $ as,
$ {e^{\int {P\left( x \right)dx} }} = {e^{\int {\left( { - \dfrac{1}{{x\left( {x + 1} \right)}}} \right)dx} }} $
By partial fractions we can write,
$
\left( { - \dfrac{1}{{x\left( {x + 1} \right)}}} \right) = \dfrac{a}{x} + \dfrac{b}{{x + 1}} \\
\Rightarrow - 1 = a\left( {x + 1} \right) + bx \;
$
If $ x = 1 $ , then $ 2a + b = - 1 $
If $ x = 2 $ , then $ 3a + 2b = - 1 $
On solving we get $ a = - 1 $ and $ b = 1 $ .
Thus,
$ {e^{\int {\left( { - \dfrac{1}{{x\left( {x + 1} \right)}}} \right)dx} }} = {e^{\int {\left( { - \dfrac{1}{x} + \dfrac{1}{{\left( {x + 1} \right)}}} \right)dx} }} = {e^{ - \ln x + \ln \left( {x + 1} \right)}} = {e^{\ln \left( {1 + \dfrac{1}{x}} \right)}} = \left( {1 + \dfrac{1}{x}} \right) $
Thus, $ I.F. = \left( {1 + \dfrac{1}{x}} \right) $
We multiply the integrating factor on both sides of the equation and integrate.
$ \Rightarrow \left( {1 + \dfrac{1}{x}} \right)y' + \left( {1 + \dfrac{1}{x}} \right)\left( { - \dfrac{1}{{x\left( {x + 1} \right)}}} \right)y = \left( {1 + \dfrac{1}{x}} \right) $
This can be written as,
$ \Rightarrow \dfrac{{d\left\{ {\left( {1 + \dfrac{1}{x}} \right)y} \right\}}}{{dx}} = \left( {1 + \dfrac{1}{x}} \right) $
Now we integrate both sides.
$
\Rightarrow \int {\dfrac{{d\left\{ {\left( {1 + \dfrac{1}{x}} \right)y} \right\}}}{{dx}}dx} = \int {\left( {1 + \dfrac{1}{x}} \right)dx} \\
\Rightarrow \left( {1 + \dfrac{1}{x}} \right)y = x + \ln x + C \;
$
We can find the value of $ C $ using the condition \[y\left( 1 \right) = 0\].
$
\Rightarrow \left( {1 + 1} \right) \times 0 = 1 + \ln 1 + C \\
\Rightarrow C + 1 = 0 \\
\Rightarrow C = - 1 \;
$
Thus we get,
$ \left( {1 + \dfrac{1}{x}} \right)y = x + \ln x - 1 $
Or we can write the function as,
$ y = \dfrac{{x\left( {x + \ln x - 1} \right)}}{{\left( {x + 1} \right)}} $
So, the correct answer is “ $ y = \dfrac{{x\left( {x + \ln x - 1} \right)}}{{\left( {x + 1} \right)}} $ ”.
Note: We solved the differential equation using the integrating factor. The integrating factor of the form $ I.F. = {e^{\int {P\left( x \right)dx} }} $ is used for the differential equation of the form $ y' + P\left( x \right)y = Q\left( x \right) $ and may not work properly for other forms of differential equation. We have to be careful while following each step in the solution.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

