
Solve the trigonometric equation $ 2{\cos ^2}\left( x \right) = 1 $ in the interval $ [0,2\pi ] $
Answer
559.2k+ views
Hint: The given question involves solving a trigonometric equation and finding the value of angle x that satisfy the given equation and lie in the range of $ [0,2\pi ] $ . There can be various methods to solve a specific trigonometric equation. For solving such questions, we need to have knowledge of basic trigonometric formulae and identities.
Complete step-by-step answer:
In the given problem, we have to solve the trigonometric equation $ 2{\cos ^2}\left( x \right) = 1 $ and find the values of x that satisfy the given equation and lie in the range of $ [0,2\pi ] $ .
So, In order to solve the given trigonometric equation $ 2{\cos ^2}\left( x \right) = 1 $ , we should first take all the terms to the left side of the equation.
Transposing all the terms to left side of the equation, we get,
$ = 2{\cos ^2}\left( x \right) - 1 = 0 $
Now, we know the double angle formula for cosine,
$ 2{\cos ^2}\left( x \right) - 1 = \cos \left( {2x} \right) $ . Hence, substituting $ \left[ {2{{\cos }^2}\left( x \right) - 1} \right] $ as $ \cos \left( {2x} \right) $ , we get,
$ = \cos \left( {2x} \right) = 0 $
The above equation represents a simple form of the trigonometric equation. We know that cosine is equal to zero at odd multiples of $ \left( {\dfrac{\pi }{2}} \right) $ .
So, $ 2x = \left( {2n + 1} \right)\left( {\dfrac{\pi }{2}} \right) $
$ = x = \left( {2n + 1} \right)\left( {\dfrac{\pi }{4}} \right) $
Now, we have found all the values of x that satisfy the given trigonometric equation. Now, we just have to select the values of that lie in the interval $ [0,2\pi ] $ .
So, for $ n = 0 $ in $ x = \left( {2n + 1} \right)\left( {\dfrac{\pi }{4}} \right) $ , we get $ x = \dfrac{\pi }{4} $ .
For $ n = 1 $ in $ x = \left( {2n + 1} \right)\left( {\dfrac{\pi }{4}} \right) $ , we get $ x = \dfrac{{3\pi }}{4} $ .
For $ n = 2 $ in $ x = \left( {2n + 1} \right)\left( {\dfrac{\pi }{4}} \right) $ , we get $ x = \dfrac{{5\pi }}{4} $ .
For $ n = 3 $ in $ x = \left( {2n + 1} \right)\left( {\dfrac{\pi }{4}} \right) $ , we get $ x = \dfrac{{7\pi }}{4} $ .
Hence, the values of x that satisfy the given trigonometric equation $ 2{\cos ^2}\left( x \right) = 1 $ and lie between the interval $ [0,2\pi ] $ are: $ x = \dfrac{\pi }{4} $ , $ \dfrac{{3\pi }}{4} $ , $ \dfrac{{5\pi }}{4} $ and $ \dfrac{{7\pi }}{4} $ .
So, the correct answer is “ $ x = \dfrac{\pi }{4} $ , $ \dfrac{{3\pi }}{4} $ , $ \dfrac{{5\pi }}{4} $ and $ \dfrac{{7\pi }}{4} $ ”.
Note: The given trigonometric equation can also be solved by first finding the value of $ {\cos ^2}\left( x \right) $ in $ 2{\cos ^2}\left( x \right) = 1 $ as ${\cos ^2}\left( x \right) = \dfrac{1}{2} $ and then finding the value of $ \cos \left( x \right) $ as $ \left( { \pm \dfrac{1}{{\sqrt 2 }}} \right) $ . Then, we solve the two equations $ \cos \left( x \right) = \dfrac{1}{{\sqrt 2 }} $ and $ \cos \left( x \right) = - \dfrac{1}{{\sqrt 2 }} $ and find the values of x that satisfy either of the equations and lie between the interval $ [0,2\pi ] $ .
Complete step-by-step answer:
In the given problem, we have to solve the trigonometric equation $ 2{\cos ^2}\left( x \right) = 1 $ and find the values of x that satisfy the given equation and lie in the range of $ [0,2\pi ] $ .
So, In order to solve the given trigonometric equation $ 2{\cos ^2}\left( x \right) = 1 $ , we should first take all the terms to the left side of the equation.
Transposing all the terms to left side of the equation, we get,
$ = 2{\cos ^2}\left( x \right) - 1 = 0 $
Now, we know the double angle formula for cosine,
$ 2{\cos ^2}\left( x \right) - 1 = \cos \left( {2x} \right) $ . Hence, substituting $ \left[ {2{{\cos }^2}\left( x \right) - 1} \right] $ as $ \cos \left( {2x} \right) $ , we get,
$ = \cos \left( {2x} \right) = 0 $
The above equation represents a simple form of the trigonometric equation. We know that cosine is equal to zero at odd multiples of $ \left( {\dfrac{\pi }{2}} \right) $ .
So, $ 2x = \left( {2n + 1} \right)\left( {\dfrac{\pi }{2}} \right) $
$ = x = \left( {2n + 1} \right)\left( {\dfrac{\pi }{4}} \right) $
Now, we have found all the values of x that satisfy the given trigonometric equation. Now, we just have to select the values of that lie in the interval $ [0,2\pi ] $ .
So, for $ n = 0 $ in $ x = \left( {2n + 1} \right)\left( {\dfrac{\pi }{4}} \right) $ , we get $ x = \dfrac{\pi }{4} $ .
For $ n = 1 $ in $ x = \left( {2n + 1} \right)\left( {\dfrac{\pi }{4}} \right) $ , we get $ x = \dfrac{{3\pi }}{4} $ .
For $ n = 2 $ in $ x = \left( {2n + 1} \right)\left( {\dfrac{\pi }{4}} \right) $ , we get $ x = \dfrac{{5\pi }}{4} $ .
For $ n = 3 $ in $ x = \left( {2n + 1} \right)\left( {\dfrac{\pi }{4}} \right) $ , we get $ x = \dfrac{{7\pi }}{4} $ .
Hence, the values of x that satisfy the given trigonometric equation $ 2{\cos ^2}\left( x \right) = 1 $ and lie between the interval $ [0,2\pi ] $ are: $ x = \dfrac{\pi }{4} $ , $ \dfrac{{3\pi }}{4} $ , $ \dfrac{{5\pi }}{4} $ and $ \dfrac{{7\pi }}{4} $ .
So, the correct answer is “ $ x = \dfrac{\pi }{4} $ , $ \dfrac{{3\pi }}{4} $ , $ \dfrac{{5\pi }}{4} $ and $ \dfrac{{7\pi }}{4} $ ”.
Note: The given trigonometric equation can also be solved by first finding the value of $ {\cos ^2}\left( x \right) $ in $ 2{\cos ^2}\left( x \right) = 1 $ as ${\cos ^2}\left( x \right) = \dfrac{1}{2} $ and then finding the value of $ \cos \left( x \right) $ as $ \left( { \pm \dfrac{1}{{\sqrt 2 }}} \right) $ . Then, we solve the two equations $ \cos \left( x \right) = \dfrac{1}{{\sqrt 2 }} $ and $ \cos \left( x \right) = - \dfrac{1}{{\sqrt 2 }} $ and find the values of x that satisfy either of the equations and lie between the interval $ [0,2\pi ] $ .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

