
Solve the shifted data IVPs by the Laplace transform. Show the details.
$ y'' + 3y' - 4y = 6{e^{2t - 3}},\;\;y\left( {1.5} \right) = 4,\;\;y'\left( {1.5} \right) = 5 $
Answer
533.1k+ views
Hint: An Initial Value Problem (IVP) is a differential equation along with an appropriate number of initial conditions. The given equation has a shifted value IVP needing a shift of $ - 1.5 $ . The Laplace Transform Formula is given as,
$ F\left( s \right)\int\limits_L {f\left( x \right){e^{ - sx}}dx} $
With the help of the Laplace formula we convert a function of a real variable $ x $ into a function of a complex variable $ s $ .
Complete step by step solution:
We have been given to solve an IVP with shifted data by Laplace transform. The differential equation is given as,
$ y'' + 3y' - 4y = 6{e^{2t - 3}},\;\;y\left( {1.5} \right) = 4,\;\;y'\left( {1.5} \right) = 5\;\;\;\;\;\;...\left( 1 \right) $
The initial conditions are about $ 1.5 $ so we need a shift of $ - 1.5 $ .
We can substitute $ \tau = t - 1.5 \Rightarrow t = \tau + 1.5 $
And $ y\left( t \right) = u\left( \tau \right) = u\left( {t - 1.5} \right) $
Substituting this in equation $ \left( 1 \right) $ we get,
$
u'' + 3u' - 4u = 6{e^{2\left( {\tau + 1.5} \right) - 3}} \\
\Rightarrow u'' + 3u' - 4u = 6{e^{2\tau }},\;\;u\left( 0 \right) = 4,\;\;u'\left( 0 \right) = 5\;\;\;\;\;\;...\left( 2 \right) \\
$
Now we will use some of the following standard Laplace transform given as,
$
L\left\{ {f\left( t \right)} \right\} = F\left( s \right) \\
L\left\{ {f'\left( t \right)} \right\} = sF\left( s \right) - f\left( 0 \right) \\
L\left\{ {f''\left( t \right)} \right\} = {s^2}F\left( s \right) - sf\left( 0 \right) - f'\left( 0 \right) \\
L\left\{ {{e^{at}}} \right\} = \dfrac{1}{{s - a}} \\
$
We can use this Laplace transforms in equation $ \left( 2 \right) $ with $ U\left( s \right) = L\left\{ {u\left( \tau \right)} \right\} $ ,
$
L\left\{ {u''} \right\} + 3L\left\{ {u'} \right\} - 4L\left\{ u \right\} = 6L\left\{ {{e^{2\tau }}} \right\} \\
\Rightarrow \left[ {{s^2}U - su\left( 0 \right) - u'\left( 0 \right)} \right] + 3\left[ {sU - u\left( 0 \right)} \right] - 4U = 6\left[ {\dfrac{1}{{s - 2}}} \right] \\
\Rightarrow \left[ {{s^2}U - 4s - 5} \right] + 3\left[ {sU - 4} \right] - 4U = \dfrac{6}{{s - 2}} \\
\Rightarrow {s^2}U - 4s - 5 + 3sU - 12 - 4U = \dfrac{6}{{s - 2}} \\
\Rightarrow \left( {{s^2} + 3s - 4} \right)U - 4s - 17 = \dfrac{6}{{s - 2}} \\
\Rightarrow \left( {{s^2} - s + 4s - 4} \right)U = \dfrac{6}{{s - 2}} + 4s + 17 \\
\Rightarrow \left( {s\left( {s - 1} \right) + 4\left( {s - 1} \right)} \right)U = \dfrac{{6 + \left( {4s + 17} \right)\left( {s - 2} \right)}}{{s - 2}} \\
\Rightarrow \left( {s + 4} \right)\left( {s - 1} \right)U = \dfrac{{6 + 4{s^2} - 8s + 17s - 34}}{{s - 2}} \\
\Rightarrow \left( {s + 4} \right)\left( {s - 1} \right)U = \dfrac{{4{s^2} + 9s - 28}}{{s - 2}} = \dfrac{{4{s^2} + 16s - 7s - 28}}{{s - 2}} = \dfrac{{4s\left( {s + 4} \right) - 7\left( {s + 4} \right)}}{{s - 2}} \\
\Rightarrow \left( {s + 4} \right)\left( {s - 1} \right)U = \dfrac{{\left( {4s - 7} \right)\left( {s + 4} \right)}}{{s - 2}} \\
\Rightarrow U = \dfrac{{\left( {4s - 7} \right)}}{{\left( {s - 1} \right)\left( {s - 2} \right)}} \;
$
We can write this function by converting into partial fractions as follows,
$
\dfrac{{\left( {4s - 7} \right)}}{{\left( {s - 1} \right)\left( {s - 2} \right)}} = \dfrac{a}{{\left( {s - 1} \right)}} + \dfrac{b}{{\left( {s - 2} \right)}} = \dfrac{{a\left( {s - 2} \right) + b\left( {s - 1} \right)}}{{\left( {s - 1} \right)\left( {s - 2} \right)}} \\
\Rightarrow \left( {4s - 7} \right) = a\left( {s - 2} \right) + b\left( {s - 1} \right) \;
$
Putting $ s = 1 \Rightarrow - 3 = - a \Rightarrow a = 3 $
And putting $ s = 2 \Rightarrow 1 = b \Rightarrow b = 1 $
Thus,
$ U\left( s \right) = \dfrac{3}{{s - 1}} + \dfrac{1}{{s - 2}} $
We can use inverse Laplace transform $ {L^{ - 1}}\left\{ {\dfrac{1}{{s - a}}} \right\} = {e^{at}} $ for $ u\left( \tau \right) = {L^{ - 1}}\left\{ {U\left( s \right)} \right\} $ to get,
$ u\left( \tau \right) = 3{e^\tau } + {e^{2\tau }} $
Further we substitute back $ \tau = t - 1.5 $ to get,
\[
y\left( t \right) = u\left( {t - 1.5} \right) = 3{e^{\left( {t - 1.5} \right)}} + {e^{2\left( {t - 1.5} \right)}} \\
\Rightarrow y\left( t \right) = 3{e^{\left( {t - 1.5} \right)}} + {e^{2t - 3}} \;
\]
Hence, the final solution for the given shifted data IVP is \[y\left( t \right) = 3{e^{\left( {t - 1.5} \right)}} + {e^{2t - 3}}\].
So, the correct answer is “\[y\left( t \right) = 3{e^{\left( {t - 1.5} \right)}} + {e^{2t - 3}}\]”.
Note: Since the initial values were not given at $ t = 0 $ we concluded that the given data is shifted and the shift is equal to the time at which the conditions are given, i.e. $ 1.5 $ in this question. We first shifted the data and then used Laplace transform to solve the differential equation. The final result is written as a function of $ t $ after substituting back all the values.
$ F\left( s \right)\int\limits_L {f\left( x \right){e^{ - sx}}dx} $
With the help of the Laplace formula we convert a function of a real variable $ x $ into a function of a complex variable $ s $ .
Complete step by step solution:
We have been given to solve an IVP with shifted data by Laplace transform. The differential equation is given as,
$ y'' + 3y' - 4y = 6{e^{2t - 3}},\;\;y\left( {1.5} \right) = 4,\;\;y'\left( {1.5} \right) = 5\;\;\;\;\;\;...\left( 1 \right) $
The initial conditions are about $ 1.5 $ so we need a shift of $ - 1.5 $ .
We can substitute $ \tau = t - 1.5 \Rightarrow t = \tau + 1.5 $
And $ y\left( t \right) = u\left( \tau \right) = u\left( {t - 1.5} \right) $
Substituting this in equation $ \left( 1 \right) $ we get,
$
u'' + 3u' - 4u = 6{e^{2\left( {\tau + 1.5} \right) - 3}} \\
\Rightarrow u'' + 3u' - 4u = 6{e^{2\tau }},\;\;u\left( 0 \right) = 4,\;\;u'\left( 0 \right) = 5\;\;\;\;\;\;...\left( 2 \right) \\
$
Now we will use some of the following standard Laplace transform given as,
$
L\left\{ {f\left( t \right)} \right\} = F\left( s \right) \\
L\left\{ {f'\left( t \right)} \right\} = sF\left( s \right) - f\left( 0 \right) \\
L\left\{ {f''\left( t \right)} \right\} = {s^2}F\left( s \right) - sf\left( 0 \right) - f'\left( 0 \right) \\
L\left\{ {{e^{at}}} \right\} = \dfrac{1}{{s - a}} \\
$
We can use this Laplace transforms in equation $ \left( 2 \right) $ with $ U\left( s \right) = L\left\{ {u\left( \tau \right)} \right\} $ ,
$
L\left\{ {u''} \right\} + 3L\left\{ {u'} \right\} - 4L\left\{ u \right\} = 6L\left\{ {{e^{2\tau }}} \right\} \\
\Rightarrow \left[ {{s^2}U - su\left( 0 \right) - u'\left( 0 \right)} \right] + 3\left[ {sU - u\left( 0 \right)} \right] - 4U = 6\left[ {\dfrac{1}{{s - 2}}} \right] \\
\Rightarrow \left[ {{s^2}U - 4s - 5} \right] + 3\left[ {sU - 4} \right] - 4U = \dfrac{6}{{s - 2}} \\
\Rightarrow {s^2}U - 4s - 5 + 3sU - 12 - 4U = \dfrac{6}{{s - 2}} \\
\Rightarrow \left( {{s^2} + 3s - 4} \right)U - 4s - 17 = \dfrac{6}{{s - 2}} \\
\Rightarrow \left( {{s^2} - s + 4s - 4} \right)U = \dfrac{6}{{s - 2}} + 4s + 17 \\
\Rightarrow \left( {s\left( {s - 1} \right) + 4\left( {s - 1} \right)} \right)U = \dfrac{{6 + \left( {4s + 17} \right)\left( {s - 2} \right)}}{{s - 2}} \\
\Rightarrow \left( {s + 4} \right)\left( {s - 1} \right)U = \dfrac{{6 + 4{s^2} - 8s + 17s - 34}}{{s - 2}} \\
\Rightarrow \left( {s + 4} \right)\left( {s - 1} \right)U = \dfrac{{4{s^2} + 9s - 28}}{{s - 2}} = \dfrac{{4{s^2} + 16s - 7s - 28}}{{s - 2}} = \dfrac{{4s\left( {s + 4} \right) - 7\left( {s + 4} \right)}}{{s - 2}} \\
\Rightarrow \left( {s + 4} \right)\left( {s - 1} \right)U = \dfrac{{\left( {4s - 7} \right)\left( {s + 4} \right)}}{{s - 2}} \\
\Rightarrow U = \dfrac{{\left( {4s - 7} \right)}}{{\left( {s - 1} \right)\left( {s - 2} \right)}} \;
$
We can write this function by converting into partial fractions as follows,
$
\dfrac{{\left( {4s - 7} \right)}}{{\left( {s - 1} \right)\left( {s - 2} \right)}} = \dfrac{a}{{\left( {s - 1} \right)}} + \dfrac{b}{{\left( {s - 2} \right)}} = \dfrac{{a\left( {s - 2} \right) + b\left( {s - 1} \right)}}{{\left( {s - 1} \right)\left( {s - 2} \right)}} \\
\Rightarrow \left( {4s - 7} \right) = a\left( {s - 2} \right) + b\left( {s - 1} \right) \;
$
Putting $ s = 1 \Rightarrow - 3 = - a \Rightarrow a = 3 $
And putting $ s = 2 \Rightarrow 1 = b \Rightarrow b = 1 $
Thus,
$ U\left( s \right) = \dfrac{3}{{s - 1}} + \dfrac{1}{{s - 2}} $
We can use inverse Laplace transform $ {L^{ - 1}}\left\{ {\dfrac{1}{{s - a}}} \right\} = {e^{at}} $ for $ u\left( \tau \right) = {L^{ - 1}}\left\{ {U\left( s \right)} \right\} $ to get,
$ u\left( \tau \right) = 3{e^\tau } + {e^{2\tau }} $
Further we substitute back $ \tau = t - 1.5 $ to get,
\[
y\left( t \right) = u\left( {t - 1.5} \right) = 3{e^{\left( {t - 1.5} \right)}} + {e^{2\left( {t - 1.5} \right)}} \\
\Rightarrow y\left( t \right) = 3{e^{\left( {t - 1.5} \right)}} + {e^{2t - 3}} \;
\]
Hence, the final solution for the given shifted data IVP is \[y\left( t \right) = 3{e^{\left( {t - 1.5} \right)}} + {e^{2t - 3}}\].
So, the correct answer is “\[y\left( t \right) = 3{e^{\left( {t - 1.5} \right)}} + {e^{2t - 3}}\]”.
Note: Since the initial values were not given at $ t = 0 $ we concluded that the given data is shifted and the shift is equal to the time at which the conditions are given, i.e. $ 1.5 $ in this question. We first shifted the data and then used Laplace transform to solve the differential equation. The final result is written as a function of $ t $ after substituting back all the values.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

