
Solve the shifted data IVPs by the Laplace transform. Show the details.
$ y'' + 3y' - 4y = 6{e^{2t - 3}},\;\;y\left( {1.5} \right) = 4,\;\;y'\left( {1.5} \right) = 5 $
Answer
521.7k+ views
Hint: An Initial Value Problem (IVP) is a differential equation along with an appropriate number of initial conditions. The given equation has a shifted value IVP needing a shift of $ - 1.5 $ . The Laplace Transform Formula is given as,
$ F\left( s \right)\int\limits_L {f\left( x \right){e^{ - sx}}dx} $
With the help of the Laplace formula we convert a function of a real variable $ x $ into a function of a complex variable $ s $ .
Complete step by step solution:
We have been given to solve an IVP with shifted data by Laplace transform. The differential equation is given as,
$ y'' + 3y' - 4y = 6{e^{2t - 3}},\;\;y\left( {1.5} \right) = 4,\;\;y'\left( {1.5} \right) = 5\;\;\;\;\;\;...\left( 1 \right) $
The initial conditions are about $ 1.5 $ so we need a shift of $ - 1.5 $ .
We can substitute $ \tau = t - 1.5 \Rightarrow t = \tau + 1.5 $
And $ y\left( t \right) = u\left( \tau \right) = u\left( {t - 1.5} \right) $
Substituting this in equation $ \left( 1 \right) $ we get,
$
u'' + 3u' - 4u = 6{e^{2\left( {\tau + 1.5} \right) - 3}} \\
\Rightarrow u'' + 3u' - 4u = 6{e^{2\tau }},\;\;u\left( 0 \right) = 4,\;\;u'\left( 0 \right) = 5\;\;\;\;\;\;...\left( 2 \right) \\
$
Now we will use some of the following standard Laplace transform given as,
$
L\left\{ {f\left( t \right)} \right\} = F\left( s \right) \\
L\left\{ {f'\left( t \right)} \right\} = sF\left( s \right) - f\left( 0 \right) \\
L\left\{ {f''\left( t \right)} \right\} = {s^2}F\left( s \right) - sf\left( 0 \right) - f'\left( 0 \right) \\
L\left\{ {{e^{at}}} \right\} = \dfrac{1}{{s - a}} \\
$
We can use this Laplace transforms in equation $ \left( 2 \right) $ with $ U\left( s \right) = L\left\{ {u\left( \tau \right)} \right\} $ ,
$
L\left\{ {u''} \right\} + 3L\left\{ {u'} \right\} - 4L\left\{ u \right\} = 6L\left\{ {{e^{2\tau }}} \right\} \\
\Rightarrow \left[ {{s^2}U - su\left( 0 \right) - u'\left( 0 \right)} \right] + 3\left[ {sU - u\left( 0 \right)} \right] - 4U = 6\left[ {\dfrac{1}{{s - 2}}} \right] \\
\Rightarrow \left[ {{s^2}U - 4s - 5} \right] + 3\left[ {sU - 4} \right] - 4U = \dfrac{6}{{s - 2}} \\
\Rightarrow {s^2}U - 4s - 5 + 3sU - 12 - 4U = \dfrac{6}{{s - 2}} \\
\Rightarrow \left( {{s^2} + 3s - 4} \right)U - 4s - 17 = \dfrac{6}{{s - 2}} \\
\Rightarrow \left( {{s^2} - s + 4s - 4} \right)U = \dfrac{6}{{s - 2}} + 4s + 17 \\
\Rightarrow \left( {s\left( {s - 1} \right) + 4\left( {s - 1} \right)} \right)U = \dfrac{{6 + \left( {4s + 17} \right)\left( {s - 2} \right)}}{{s - 2}} \\
\Rightarrow \left( {s + 4} \right)\left( {s - 1} \right)U = \dfrac{{6 + 4{s^2} - 8s + 17s - 34}}{{s - 2}} \\
\Rightarrow \left( {s + 4} \right)\left( {s - 1} \right)U = \dfrac{{4{s^2} + 9s - 28}}{{s - 2}} = \dfrac{{4{s^2} + 16s - 7s - 28}}{{s - 2}} = \dfrac{{4s\left( {s + 4} \right) - 7\left( {s + 4} \right)}}{{s - 2}} \\
\Rightarrow \left( {s + 4} \right)\left( {s - 1} \right)U = \dfrac{{\left( {4s - 7} \right)\left( {s + 4} \right)}}{{s - 2}} \\
\Rightarrow U = \dfrac{{\left( {4s - 7} \right)}}{{\left( {s - 1} \right)\left( {s - 2} \right)}} \;
$
We can write this function by converting into partial fractions as follows,
$
\dfrac{{\left( {4s - 7} \right)}}{{\left( {s - 1} \right)\left( {s - 2} \right)}} = \dfrac{a}{{\left( {s - 1} \right)}} + \dfrac{b}{{\left( {s - 2} \right)}} = \dfrac{{a\left( {s - 2} \right) + b\left( {s - 1} \right)}}{{\left( {s - 1} \right)\left( {s - 2} \right)}} \\
\Rightarrow \left( {4s - 7} \right) = a\left( {s - 2} \right) + b\left( {s - 1} \right) \;
$
Putting $ s = 1 \Rightarrow - 3 = - a \Rightarrow a = 3 $
And putting $ s = 2 \Rightarrow 1 = b \Rightarrow b = 1 $
Thus,
$ U\left( s \right) = \dfrac{3}{{s - 1}} + \dfrac{1}{{s - 2}} $
We can use inverse Laplace transform $ {L^{ - 1}}\left\{ {\dfrac{1}{{s - a}}} \right\} = {e^{at}} $ for $ u\left( \tau \right) = {L^{ - 1}}\left\{ {U\left( s \right)} \right\} $ to get,
$ u\left( \tau \right) = 3{e^\tau } + {e^{2\tau }} $
Further we substitute back $ \tau = t - 1.5 $ to get,
\[
y\left( t \right) = u\left( {t - 1.5} \right) = 3{e^{\left( {t - 1.5} \right)}} + {e^{2\left( {t - 1.5} \right)}} \\
\Rightarrow y\left( t \right) = 3{e^{\left( {t - 1.5} \right)}} + {e^{2t - 3}} \;
\]
Hence, the final solution for the given shifted data IVP is \[y\left( t \right) = 3{e^{\left( {t - 1.5} \right)}} + {e^{2t - 3}}\].
So, the correct answer is “\[y\left( t \right) = 3{e^{\left( {t - 1.5} \right)}} + {e^{2t - 3}}\]”.
Note: Since the initial values were not given at $ t = 0 $ we concluded that the given data is shifted and the shift is equal to the time at which the conditions are given, i.e. $ 1.5 $ in this question. We first shifted the data and then used Laplace transform to solve the differential equation. The final result is written as a function of $ t $ after substituting back all the values.
$ F\left( s \right)\int\limits_L {f\left( x \right){e^{ - sx}}dx} $
With the help of the Laplace formula we convert a function of a real variable $ x $ into a function of a complex variable $ s $ .
Complete step by step solution:
We have been given to solve an IVP with shifted data by Laplace transform. The differential equation is given as,
$ y'' + 3y' - 4y = 6{e^{2t - 3}},\;\;y\left( {1.5} \right) = 4,\;\;y'\left( {1.5} \right) = 5\;\;\;\;\;\;...\left( 1 \right) $
The initial conditions are about $ 1.5 $ so we need a shift of $ - 1.5 $ .
We can substitute $ \tau = t - 1.5 \Rightarrow t = \tau + 1.5 $
And $ y\left( t \right) = u\left( \tau \right) = u\left( {t - 1.5} \right) $
Substituting this in equation $ \left( 1 \right) $ we get,
$
u'' + 3u' - 4u = 6{e^{2\left( {\tau + 1.5} \right) - 3}} \\
\Rightarrow u'' + 3u' - 4u = 6{e^{2\tau }},\;\;u\left( 0 \right) = 4,\;\;u'\left( 0 \right) = 5\;\;\;\;\;\;...\left( 2 \right) \\
$
Now we will use some of the following standard Laplace transform given as,
$
L\left\{ {f\left( t \right)} \right\} = F\left( s \right) \\
L\left\{ {f'\left( t \right)} \right\} = sF\left( s \right) - f\left( 0 \right) \\
L\left\{ {f''\left( t \right)} \right\} = {s^2}F\left( s \right) - sf\left( 0 \right) - f'\left( 0 \right) \\
L\left\{ {{e^{at}}} \right\} = \dfrac{1}{{s - a}} \\
$
We can use this Laplace transforms in equation $ \left( 2 \right) $ with $ U\left( s \right) = L\left\{ {u\left( \tau \right)} \right\} $ ,
$
L\left\{ {u''} \right\} + 3L\left\{ {u'} \right\} - 4L\left\{ u \right\} = 6L\left\{ {{e^{2\tau }}} \right\} \\
\Rightarrow \left[ {{s^2}U - su\left( 0 \right) - u'\left( 0 \right)} \right] + 3\left[ {sU - u\left( 0 \right)} \right] - 4U = 6\left[ {\dfrac{1}{{s - 2}}} \right] \\
\Rightarrow \left[ {{s^2}U - 4s - 5} \right] + 3\left[ {sU - 4} \right] - 4U = \dfrac{6}{{s - 2}} \\
\Rightarrow {s^2}U - 4s - 5 + 3sU - 12 - 4U = \dfrac{6}{{s - 2}} \\
\Rightarrow \left( {{s^2} + 3s - 4} \right)U - 4s - 17 = \dfrac{6}{{s - 2}} \\
\Rightarrow \left( {{s^2} - s + 4s - 4} \right)U = \dfrac{6}{{s - 2}} + 4s + 17 \\
\Rightarrow \left( {s\left( {s - 1} \right) + 4\left( {s - 1} \right)} \right)U = \dfrac{{6 + \left( {4s + 17} \right)\left( {s - 2} \right)}}{{s - 2}} \\
\Rightarrow \left( {s + 4} \right)\left( {s - 1} \right)U = \dfrac{{6 + 4{s^2} - 8s + 17s - 34}}{{s - 2}} \\
\Rightarrow \left( {s + 4} \right)\left( {s - 1} \right)U = \dfrac{{4{s^2} + 9s - 28}}{{s - 2}} = \dfrac{{4{s^2} + 16s - 7s - 28}}{{s - 2}} = \dfrac{{4s\left( {s + 4} \right) - 7\left( {s + 4} \right)}}{{s - 2}} \\
\Rightarrow \left( {s + 4} \right)\left( {s - 1} \right)U = \dfrac{{\left( {4s - 7} \right)\left( {s + 4} \right)}}{{s - 2}} \\
\Rightarrow U = \dfrac{{\left( {4s - 7} \right)}}{{\left( {s - 1} \right)\left( {s - 2} \right)}} \;
$
We can write this function by converting into partial fractions as follows,
$
\dfrac{{\left( {4s - 7} \right)}}{{\left( {s - 1} \right)\left( {s - 2} \right)}} = \dfrac{a}{{\left( {s - 1} \right)}} + \dfrac{b}{{\left( {s - 2} \right)}} = \dfrac{{a\left( {s - 2} \right) + b\left( {s - 1} \right)}}{{\left( {s - 1} \right)\left( {s - 2} \right)}} \\
\Rightarrow \left( {4s - 7} \right) = a\left( {s - 2} \right) + b\left( {s - 1} \right) \;
$
Putting $ s = 1 \Rightarrow - 3 = - a \Rightarrow a = 3 $
And putting $ s = 2 \Rightarrow 1 = b \Rightarrow b = 1 $
Thus,
$ U\left( s \right) = \dfrac{3}{{s - 1}} + \dfrac{1}{{s - 2}} $
We can use inverse Laplace transform $ {L^{ - 1}}\left\{ {\dfrac{1}{{s - a}}} \right\} = {e^{at}} $ for $ u\left( \tau \right) = {L^{ - 1}}\left\{ {U\left( s \right)} \right\} $ to get,
$ u\left( \tau \right) = 3{e^\tau } + {e^{2\tau }} $
Further we substitute back $ \tau = t - 1.5 $ to get,
\[
y\left( t \right) = u\left( {t - 1.5} \right) = 3{e^{\left( {t - 1.5} \right)}} + {e^{2\left( {t - 1.5} \right)}} \\
\Rightarrow y\left( t \right) = 3{e^{\left( {t - 1.5} \right)}} + {e^{2t - 3}} \;
\]
Hence, the final solution for the given shifted data IVP is \[y\left( t \right) = 3{e^{\left( {t - 1.5} \right)}} + {e^{2t - 3}}\].
So, the correct answer is “\[y\left( t \right) = 3{e^{\left( {t - 1.5} \right)}} + {e^{2t - 3}}\]”.
Note: Since the initial values were not given at $ t = 0 $ we concluded that the given data is shifted and the shift is equal to the time at which the conditions are given, i.e. $ 1.5 $ in this question. We first shifted the data and then used Laplace transform to solve the differential equation. The final result is written as a function of $ t $ after substituting back all the values.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

