
How do you solve the quadratic equation ${x^2} + 3x - 1 = 0$ by completing the square?
Answer
542.7k+ views
Hint: To solve the quadratic equation by completing the square we have to transform the equation in ${(x + a)^2} = {b^2}$ . As there is $3$ in the coefficient of $x$ we can write $3\;x$ as $2 \cdot \dfrac{3}{2}x$ and we will add $\dfrac{9}{4}$ both sides of the equation. Then we will get the required form. Then we will square root both sides and get the solution.
Complete step by step answer:
We have given;
${x^2} + 3x - 1 = 0$
We will try to get the whole square form on both sides.
We know that ${(x + a)^2} = {x^2} + 2ax + {a^2}$ . We will try to convert the part ${x^2} + 3x$ in ${(x + a)^2}$ . We can see the coefficient of $x$ is $3$ . We can write $3\;x$ as $2 \cdot \dfrac{3}{2}x$ . Then we have;
$\Rightarrow {x^2} + 2 \cdot \dfrac{3}{2}x - 1 = 0$
To transform this equation in the square form we will add ${\left( {\dfrac{3}{2}} \right)^2}$ that is $\dfrac{9}{4}$ in both side of the equation and get;
$\Rightarrow {x^2} + 2 \cdot \dfrac{3}{2}x + \dfrac{9}{4} - 1 = \dfrac{9}{4}$
Adding $1$ in both sides we get;
$\Rightarrow {x^2} + 2 \cdot \dfrac{3}{2}x + \dfrac{9}{4} = \dfrac{9}{4} + 1$
Simplifying the above equation we get;
$\Rightarrow {x^2} + 2 \cdot \dfrac{3}{2}x + \dfrac{9}{4} = \dfrac{{13}}{4}$
The left side is equal to nothing but ${\left( {x + \dfrac{3}{2}} \right)^2}$ .So we can write;
$\Rightarrow {\left( {x + \dfrac{3}{2}} \right)^2} = \dfrac{{13}}{4}$
Now $\dfrac{{13}}{4}$ is the square of $\pm \dfrac{{\sqrt {13} }}{2}$ .
Removing square from both side of the above equation we get;
$\Rightarrow x + \dfrac{3}{2} = \pm \dfrac{{\sqrt {13} }}{2}$
Subtracting $\dfrac{3}{2}$ from both side we get;
$\Rightarrow x = \pm \dfrac{{\sqrt {13} }}{2} - \dfrac{3}{2}$
So the solution of the given equation is;
$x = \dfrac{{\sqrt {13} - 3}}{2}$
And $x = \dfrac{{ - \sqrt {13} - 3}}{2}$ .
Additional Information:
If there is some coefficient of ${x^2}$ rather than $1$ to convert the equation in the square form we have to write the coefficient of $x$ as multiplication of $2$ , the square root of the coefficient of ${x^2}$and another constant. Then we have to add the square of that extra constant on both sides of the equation.
Note: This is required to convert both sides of the equation in whole square form to solve this kind of question. To convert the equation in whole square form always we have to look at the coefficient of $x$ and we have to try to convert the coefficient in twice of some number and then we have to add both sides of the square of the coefficient.
Complete step by step answer:
We have given;
${x^2} + 3x - 1 = 0$
We will try to get the whole square form on both sides.
We know that ${(x + a)^2} = {x^2} + 2ax + {a^2}$ . We will try to convert the part ${x^2} + 3x$ in ${(x + a)^2}$ . We can see the coefficient of $x$ is $3$ . We can write $3\;x$ as $2 \cdot \dfrac{3}{2}x$ . Then we have;
$\Rightarrow {x^2} + 2 \cdot \dfrac{3}{2}x - 1 = 0$
To transform this equation in the square form we will add ${\left( {\dfrac{3}{2}} \right)^2}$ that is $\dfrac{9}{4}$ in both side of the equation and get;
$\Rightarrow {x^2} + 2 \cdot \dfrac{3}{2}x + \dfrac{9}{4} - 1 = \dfrac{9}{4}$
Adding $1$ in both sides we get;
$\Rightarrow {x^2} + 2 \cdot \dfrac{3}{2}x + \dfrac{9}{4} = \dfrac{9}{4} + 1$
Simplifying the above equation we get;
$\Rightarrow {x^2} + 2 \cdot \dfrac{3}{2}x + \dfrac{9}{4} = \dfrac{{13}}{4}$
The left side is equal to nothing but ${\left( {x + \dfrac{3}{2}} \right)^2}$ .So we can write;
$\Rightarrow {\left( {x + \dfrac{3}{2}} \right)^2} = \dfrac{{13}}{4}$
Now $\dfrac{{13}}{4}$ is the square of $\pm \dfrac{{\sqrt {13} }}{2}$ .
Removing square from both side of the above equation we get;
$\Rightarrow x + \dfrac{3}{2} = \pm \dfrac{{\sqrt {13} }}{2}$
Subtracting $\dfrac{3}{2}$ from both side we get;
$\Rightarrow x = \pm \dfrac{{\sqrt {13} }}{2} - \dfrac{3}{2}$
So the solution of the given equation is;
$x = \dfrac{{\sqrt {13} - 3}}{2}$
And $x = \dfrac{{ - \sqrt {13} - 3}}{2}$ .
Additional Information:
If there is some coefficient of ${x^2}$ rather than $1$ to convert the equation in the square form we have to write the coefficient of $x$ as multiplication of $2$ , the square root of the coefficient of ${x^2}$and another constant. Then we have to add the square of that extra constant on both sides of the equation.
Note: This is required to convert both sides of the equation in whole square form to solve this kind of question. To convert the equation in whole square form always we have to look at the coefficient of $x$ and we have to try to convert the coefficient in twice of some number and then we have to add both sides of the square of the coefficient.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

