
Solve the matrix equation \[\left[ \begin{align}
& \begin{matrix}
5 & 4 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 \\
\end{matrix} \\
\end{align} \right]X\] = \[\left[ \begin{align}
& \begin{matrix}
1 & -2 \\
\end{matrix} \\
& \begin{matrix}
1 & 3 \\
\end{matrix} \\
\end{align} \right]\] , where X is a \[2\times 2\] matrix.
Answer
585.3k+ views
Hint: Assume a matrix X, \[X=\left[ \begin{align}
& \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{c}_{1}} & {{d}_{1}} \\
\end{matrix} \\
\end{align} \right]\] . Now, replace X by matrix X in the equation \[\left[ \begin{align}
& \begin{matrix}
5 & 4 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 \\
\end{matrix} \\
\end{align} \right]X\] = \[\left[ \begin{align}
& \begin{matrix}
1 & -2 \\
\end{matrix} \\
& \begin{matrix}
1 & 3 \\
\end{matrix} \\
\end{align} \right]\] . Now, compare the elements of rows of the matrix in the LHS with the corresponding elements of the matrix in the RHS. Now, we have four equations and we have four variables. Solve it further and get the values of \[{{a}_{1}}\] , \[{{b}_{1}}\] , \[{{c}_{1}}\] , and \[{{d}_{1}}\] .
Complete step-by-step answer:
According to the question, it is given that
\[\left[ \begin{align}
& \begin{matrix}
5 & 4 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 \\
\end{matrix} \\
\end{align} \right]X\] = \[\left[ \begin{align}
& \begin{matrix}
1 & -2 \\
\end{matrix} \\
& \begin{matrix}
1 & 3 \\
\end{matrix} \\
\end{align} \right]\]………………………(1)
Here, X is a \[2\times 2\] matrix.
Let us assume a \[2\times 2\] matrix be X and the elements of the matrix X be
\[X=\left[ \begin{align}
& \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{c}_{1}} & {{d}_{1}} \\
\end{matrix} \\
\end{align} \right]\] ………………………(2)
Putting the matrix X in equation (1), we get
\[\left[ \begin{align}
& \begin{matrix}
5 & 4 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 \\
\end{matrix} \\
\end{align} \right]\]\[\left[ \begin{align}
& \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{c}_{1}} & {{d}_{1}} \\
\end{matrix} \\
\end{align} \right]\] = \[\left[ \begin{align}
& \begin{matrix}
1 & -2 \\
\end{matrix} \\
& \begin{matrix}
1 & 3 \\
\end{matrix} \\
\end{align} \right]\] …………………………(3)
Now, we have to multiply the matrix \[\left[ \begin{align}
& \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{c}_{1}} & {{d}_{1}} \\
\end{matrix} \\
\end{align} \right]\] and \[\left[ \begin{align}
& \begin{matrix}
5 & 4 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 \\
\end{matrix} \\
\end{align} \right]\] .
On multiplying, we get
\[\left[ \begin{align}
& \begin{matrix}
5 & 4 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 \\
\end{matrix} \\
\end{align} \right]\]\[\left[ \begin{align}
& \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{c}_{1}} & {{d}_{1}} \\
\end{matrix} \\
\end{align} \right]\]
\[=\left[ \begin{align}
& \begin{matrix}
5{{a}_{1}}+4{{c}_{1}} & 5{{b}_{1}}+4{{d}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{a}_{1}}+{{c}_{1}} & \,\,\,\,\,\,\,\,{{b}_{1}}+{{d}_{1}} \\
\end{matrix} \\
\end{align} \right]\] …………………….(4)
From equation (3), we have \[\left[ \begin{align}
& \begin{matrix}
5 & 4 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 \\
\end{matrix} \\
\end{align} \right]\]\[\left[ \begin{align}
& \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{c}_{1}} & {{d}_{1}} \\
\end{matrix} \\
\end{align} \right]\] = \[\left[ \begin{align}
& \begin{matrix}
1 & -2 \\
\end{matrix} \\
& \begin{matrix}
1 & 3 \\
\end{matrix} \\
\end{align} \right]\] and from equation (4), we have
\[\left[ \begin{align}
& \begin{matrix}
1 & -2 \\
\end{matrix} \\
& \begin{matrix}
1 & 3 \\
\end{matrix} \\
\end{align} \right]\] = \[\left[ \begin{align}
& \begin{matrix}
5{{a}_{1}}+4{{c}_{1}} & 5{{b}_{1}}+4{{d}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{a}_{1}}+{{c}_{1}} & \,\,\,\,\,\,\,\,{{b}_{1}}+{{d}_{1}} \\
\end{matrix} \\
\end{align} \right]\] ……………………..(5)
We have to compare the elements of each row and columns of LHS with the elements of each column.
On comparing, we get
\[5{{a}_{1}}+4{{c}_{1}}=1\] ……………………..(6)
\[{{a}_{1}}+{{c}_{1}}=1\] …………………..(7)
\[5{{b}_{1}}+4{{d}_{1}}=-2\] ………………………(8)
\[{{b}_{1}}+{{d}_{1}}=3\] ……………………(9)
Multiplying equation (7) by 4 and then deducing equation (6), we get
\[5{{a}_{1}}+4{{c}_{1}}=1\]
\[4{{a}_{1}}+4{{c}_{1}}=4\]
After deducting these two equations, we get \[{{a}_{1}}=-3\] .
Now, putting the value of \[{{a}_{1}}\] in equation (7), we get
\[{{a}_{1}}+{{c}_{1}}=1\]
\[\begin{align}
& \Rightarrow -3+{{c}_{1}}=1 \\
& \Rightarrow {{c}_{1}}=1+3 \\
& \Rightarrow {{c}_{1}}=4 \\
\end{align}\]
Multiplying equation (9) by 4 and then deducing equation (8), we get
\[5{{b}_{1}}+4{{d}_{1}}=-2\]
\[4{{b}_{1}}+4{{d}_{1}}=12\]
After deducting these two equations, we get \[{{b}_{1}}=-14\] .
Now, putting the value of \[{{b}_{1}}\] in equation (9), we get
\[{{b}_{1}}+{{d}_{1}}=3\]
\[\begin{align}
& \Rightarrow -14+{{d}_{1}}=3 \\
& \Rightarrow {{d}_{1}}=14+3 \\
& \Rightarrow {{d}_{1}}=17 \\
\end{align}\]
Now, we have got the values of each element of rows and columns of the matrix X.
Hence, the matrix X is, \[X=\left[ \begin{align}
& \begin{matrix}
-3 & 17 \\
\end{matrix} \\
& \begin{matrix}
4 & -14 \\
\end{matrix} \\
\end{align} \right]\] .
Note: To solve this question, one may think to solve the equation \[\left[ \begin{align}
& \begin{matrix}
5 & 4 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 \\
\end{matrix} \\
\end{align} \right]X\] = \[\left[ \begin{align}
& \begin{matrix}
1 & -2 \\
\end{matrix} \\
& \begin{matrix}
1 & 3 \\
\end{matrix} \\
\end{align} \right]\] and after solving we will get \[X=\dfrac{\left[ \begin{align}
& \begin{matrix}
1 & -2 \\
\end{matrix} \\
& \begin{matrix}
1 & 3 \\
\end{matrix} \\
\end{align} \right]}{\left[ \begin{align}
& \begin{matrix}
5 & 4 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 \\
\end{matrix} \\
\end{align} \right]}\] . This equation is complex to be solved and we don’t have any direct method to solve the division of two matrices. So, we cannot approach this question through this method.
& \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{c}_{1}} & {{d}_{1}} \\
\end{matrix} \\
\end{align} \right]\] . Now, replace X by matrix X in the equation \[\left[ \begin{align}
& \begin{matrix}
5 & 4 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 \\
\end{matrix} \\
\end{align} \right]X\] = \[\left[ \begin{align}
& \begin{matrix}
1 & -2 \\
\end{matrix} \\
& \begin{matrix}
1 & 3 \\
\end{matrix} \\
\end{align} \right]\] . Now, compare the elements of rows of the matrix in the LHS with the corresponding elements of the matrix in the RHS. Now, we have four equations and we have four variables. Solve it further and get the values of \[{{a}_{1}}\] , \[{{b}_{1}}\] , \[{{c}_{1}}\] , and \[{{d}_{1}}\] .
Complete step-by-step answer:
According to the question, it is given that
\[\left[ \begin{align}
& \begin{matrix}
5 & 4 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 \\
\end{matrix} \\
\end{align} \right]X\] = \[\left[ \begin{align}
& \begin{matrix}
1 & -2 \\
\end{matrix} \\
& \begin{matrix}
1 & 3 \\
\end{matrix} \\
\end{align} \right]\]………………………(1)
Here, X is a \[2\times 2\] matrix.
Let us assume a \[2\times 2\] matrix be X and the elements of the matrix X be
\[X=\left[ \begin{align}
& \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{c}_{1}} & {{d}_{1}} \\
\end{matrix} \\
\end{align} \right]\] ………………………(2)
Putting the matrix X in equation (1), we get
\[\left[ \begin{align}
& \begin{matrix}
5 & 4 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 \\
\end{matrix} \\
\end{align} \right]\]\[\left[ \begin{align}
& \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{c}_{1}} & {{d}_{1}} \\
\end{matrix} \\
\end{align} \right]\] = \[\left[ \begin{align}
& \begin{matrix}
1 & -2 \\
\end{matrix} \\
& \begin{matrix}
1 & 3 \\
\end{matrix} \\
\end{align} \right]\] …………………………(3)
Now, we have to multiply the matrix \[\left[ \begin{align}
& \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{c}_{1}} & {{d}_{1}} \\
\end{matrix} \\
\end{align} \right]\] and \[\left[ \begin{align}
& \begin{matrix}
5 & 4 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 \\
\end{matrix} \\
\end{align} \right]\] .
On multiplying, we get
\[\left[ \begin{align}
& \begin{matrix}
5 & 4 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 \\
\end{matrix} \\
\end{align} \right]\]\[\left[ \begin{align}
& \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{c}_{1}} & {{d}_{1}} \\
\end{matrix} \\
\end{align} \right]\]
\[=\left[ \begin{align}
& \begin{matrix}
5{{a}_{1}}+4{{c}_{1}} & 5{{b}_{1}}+4{{d}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{a}_{1}}+{{c}_{1}} & \,\,\,\,\,\,\,\,{{b}_{1}}+{{d}_{1}} \\
\end{matrix} \\
\end{align} \right]\] …………………….(4)
From equation (3), we have \[\left[ \begin{align}
& \begin{matrix}
5 & 4 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 \\
\end{matrix} \\
\end{align} \right]\]\[\left[ \begin{align}
& \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{c}_{1}} & {{d}_{1}} \\
\end{matrix} \\
\end{align} \right]\] = \[\left[ \begin{align}
& \begin{matrix}
1 & -2 \\
\end{matrix} \\
& \begin{matrix}
1 & 3 \\
\end{matrix} \\
\end{align} \right]\] and from equation (4), we have
\[\left[ \begin{align}
& \begin{matrix}
1 & -2 \\
\end{matrix} \\
& \begin{matrix}
1 & 3 \\
\end{matrix} \\
\end{align} \right]\] = \[\left[ \begin{align}
& \begin{matrix}
5{{a}_{1}}+4{{c}_{1}} & 5{{b}_{1}}+4{{d}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{a}_{1}}+{{c}_{1}} & \,\,\,\,\,\,\,\,{{b}_{1}}+{{d}_{1}} \\
\end{matrix} \\
\end{align} \right]\] ……………………..(5)
We have to compare the elements of each row and columns of LHS with the elements of each column.
On comparing, we get
\[5{{a}_{1}}+4{{c}_{1}}=1\] ……………………..(6)
\[{{a}_{1}}+{{c}_{1}}=1\] …………………..(7)
\[5{{b}_{1}}+4{{d}_{1}}=-2\] ………………………(8)
\[{{b}_{1}}+{{d}_{1}}=3\] ……………………(9)
Multiplying equation (7) by 4 and then deducing equation (6), we get
\[5{{a}_{1}}+4{{c}_{1}}=1\]
\[4{{a}_{1}}+4{{c}_{1}}=4\]
After deducting these two equations, we get \[{{a}_{1}}=-3\] .
Now, putting the value of \[{{a}_{1}}\] in equation (7), we get
\[{{a}_{1}}+{{c}_{1}}=1\]
\[\begin{align}
& \Rightarrow -3+{{c}_{1}}=1 \\
& \Rightarrow {{c}_{1}}=1+3 \\
& \Rightarrow {{c}_{1}}=4 \\
\end{align}\]
Multiplying equation (9) by 4 and then deducing equation (8), we get
\[5{{b}_{1}}+4{{d}_{1}}=-2\]
\[4{{b}_{1}}+4{{d}_{1}}=12\]
After deducting these two equations, we get \[{{b}_{1}}=-14\] .
Now, putting the value of \[{{b}_{1}}\] in equation (9), we get
\[{{b}_{1}}+{{d}_{1}}=3\]
\[\begin{align}
& \Rightarrow -14+{{d}_{1}}=3 \\
& \Rightarrow {{d}_{1}}=14+3 \\
& \Rightarrow {{d}_{1}}=17 \\
\end{align}\]
Now, we have got the values of each element of rows and columns of the matrix X.
Hence, the matrix X is, \[X=\left[ \begin{align}
& \begin{matrix}
-3 & 17 \\
\end{matrix} \\
& \begin{matrix}
4 & -14 \\
\end{matrix} \\
\end{align} \right]\] .
Note: To solve this question, one may think to solve the equation \[\left[ \begin{align}
& \begin{matrix}
5 & 4 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 \\
\end{matrix} \\
\end{align} \right]X\] = \[\left[ \begin{align}
& \begin{matrix}
1 & -2 \\
\end{matrix} \\
& \begin{matrix}
1 & 3 \\
\end{matrix} \\
\end{align} \right]\] and after solving we will get \[X=\dfrac{\left[ \begin{align}
& \begin{matrix}
1 & -2 \\
\end{matrix} \\
& \begin{matrix}
1 & 3 \\
\end{matrix} \\
\end{align} \right]}{\left[ \begin{align}
& \begin{matrix}
5 & 4 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 \\
\end{matrix} \\
\end{align} \right]}\] . This equation is complex to be solved and we don’t have any direct method to solve the division of two matrices. So, we cannot approach this question through this method.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

