
Solve the given indefinite integral:\[\int {{x^4}{e^{2x}}dx = } \]
A. \[\dfrac{{{e^{2x}}}}{4}\left( {2{x^4} - 4{x^3} + 6{x^2} - 6x + 3} \right) + c\]
B. \[\dfrac{{{e^{2x}}}}{2}\left( {2{x^4} - 4{x^3} + 6{x^2} - 6x + 3} \right) + c\]
C. \[\dfrac{{{e^{2x}}}}{8}\left( {2{x^4} + 4{x^3} + 6{x^2} + 6x + 3} \right) + c\]
D. \[\dfrac{{{e^{2x}}}}{4}\left( {2{x^4} + 4{x^3} + 6{x^2} + 6x + 3} \right) + c\]
Answer
584.7k+ views
Hint: To solve the given question above we will first put \[{\text{2x}} = {\text{t}}\] and convert whole integrals in terms of t. Now use the integration by parts method to integrate the given function and at last replace t with its original value.
Complete step-by-step answer:
In the question given, we have to find the value of \[\int {{e^{2x}}.{x^4}dx} \]. Let its value be I. Thus, we have:
\[I = \int {{x^4}{e^{2x}}dx} \]
Now, we will put \[2x = t\] .On differentiating both sides we will get:
\[2dx = dt\]
\[ \Rightarrow dx = \dfrac{{dt}}{2}\]
Thus, we will get:
\[\begin{array}{l}I = \int {{{\left( {\dfrac{t}{2}} \right)}^4}{e^t}\left( {\dfrac{{dt}}{2}} \right)} \\I = \left( {\dfrac{1}{{{2^5}}}} \right)\int {{e^t}.{t^4}dt} \end{array}\]
Now, we will calculate the value of \[\int {{e^t}.t} \] with the help of by parts. According to by parts theorem of integration, we have:
\[\int {uv = } u\int {v - \int {u\int v } } \]
In our case \[u = t\,\,and\,\,v - {e^t}\] . Thus, we will get:
\[\begin{array}{l}\int {{e^t}.t\,dt = } \,t\int {{e^t}\,dt - \int {\dfrac{{dt}}{{dt}}{{\int {{e^t}\,\left( {dt} \right)} }^2}} } \\\int {{e^t}t\,dt = } \,t{e^t} - \int {{e^t}\,\left( {dt} \right)} \end{array}\]
\[\int {{e^t}t\,dt = } \,t{e^t} - {e^t} + {c_1}\] . . . . . . . . . . . . . (i)
Now we will calculate the value of \[\int {{e^t}{t^t}\,dt} \]. In this function, we will again use by-parts. In this case, we will take \[u = t\,\,and\,\,v = {e^t}t\] . Thus, we will get:
\[\int {{e^t}{t^2}\,dt = } \,t\int {{e^t}t\,dt - \int {\dfrac{{dt}}{{dt}}{{\int {\left( {{e^t}t\,} \right)\left( {dt} \right)} }^2}} } \] . . . . . . . . . . . . . (ii)
Now, we will put the value of \[\int {{e^t}t\,dt} \] from (i) into (ii). Thus, we will get following equation:
\[\begin{array}{l}\int {{e^t}{t^2}\,dt = } \,t\left[ {t{e^t} - {e^t}} \right] - \int {\left( {t{e^t} - {e^t}} \right)} \,dt + {c_2}\\\int {{e^t}{t^2}\,dt = } \,{t^2}{e^t} - t{e^t} - \int {t{e^t}dt + \int {{e^t}} dt + {c_2}} \,\\\int {{e^t}{t^2}\,dt = } \,{t^2}{e^t} - t{e^t} - \left( {t{e^t} - {e^t}} \right)\, + {e^t} + {c_2}\end{array}\]
\[\int {{e^t}{t^2}\,dt = } \,{t^2}{e^t} - 2t{e^t}\, + 2{e^t} + {c_2}\] . . . . . . . . . . . . . (iii)
Now, we will calculate the value of \[\int {{e^t}{t^3}} \] by the help of by-parts. In this case, we will take \[u = t\,\,and\,\,v = {e^t}{t^2}\] . Thus, we will get:
\[\int {{e^t}{t^3}\,dt = } \,t\int {{e^t}{t^2}\,dt} - \int {\dfrac{{dt}}{{dt}}\int {\left( {{e^t}{t^2}} \right)} } \,{\left( {dt} \right)^2}\] . . . . . . . . . . . . . (iv)
Now, we will put the value of \[{e^t}{t^2}\] from (iii) to (iv). Thus, we will get:
\[\begin{array}{l} \Rightarrow \int {{e^t}{t^3}\,dt = } \,t\left[ {{t^2}{e^t} - 2t{e^t} + 2{e^t}} \right] - \int {\left( {{t^2}{e^t} - 2t{e^t} + 2{e^t}} \right)} \,dt + {c_3}\\ \Rightarrow \int {{e^t}{t^3}\,dt = } \,{t^3}{e^t} - 2{t^2}{e^t} + 2t{e^t} - \int {{t^2}{e^t}dt + 2\int {t{e^t}dt} - 2\int {{e^t}dt} \,} + {c_3}\\ \Rightarrow \int {{e^t}{t^3}\,dt = } \,{t^3}{e^t} - 2{t^2}{e^t} + 2t{e^t} - \left[ {{t^2}{e^t} - 2t{e^t} + 2{e^t}} \right] + 2\left[ {t{e^t} - {e^t}} \right] - 2{e^t} + {c_3}\\ \Rightarrow \int {{e^t}{t^3}\,dt = } \,{t^3}{e^t} - 2{t^2}{e^t} + 2t{e^t} - {t^2}{e^t} + 2t{e^t} - 2{e^t} + 2t{e^t} - 2{e^t} - 2{e^t} + {c_3}\end{array}\]
\[ \Rightarrow \int {{e^t}{t^3}\,dt = } \,{t^3}{e^t} - 3{t^2}{e^t} - 6t{e^t} - 6{e^t} + {c_3}\] . . . . . . . . . . . . . (v)
Now, we will calculate the value of \[{e^t}{t^4}dt\] by the help of by-parts. In this case, we will take \[u = t\,\,and\,\,v = {e^t}{t^3}\] . Thus, we will get:
\[\int {{e^t}{t^4}\,dt = } \,t\int {{e^t}{t^3}\,dt} - \int {\dfrac{{dt}}{{dt}}\int {\left( {{e^t}{t^3}} \right)} } \,{\left( {dt} \right)^2}\] . . . . . . . . . . . . (vi)
Now, we will put the value of \[{e^t}{t^3}\,dt\] from (v) to (vi). Thus, we will get:
\[\begin{array}{l} \Rightarrow \int {{e^t}{t^4}\,dt = } \,t\left[ {{t^3}{e^t} - 3{t^2}{e^t} + 6t{e^t} - 6{e^t}} \right] - \int {\left( {{t^3}{e^t} - 3{t^2}{e^t} + 6t{e^t} - 6{e^t}} \right)} \,dt + {c_4}\\ \Rightarrow \int {{e^t}{t^4}\,dt = } \,{t^4}{e^t} - 3{t^3}{e^t} + 6{t^2}{e^t} - 6t{e^t} - \int {{t^3}{e^t}dt + \int {3{t^2}{e^t}dt} - 6\int {t{e^t}dt} \,} + 6\int {{e^t}dt} \, + {c_4}\\ \Rightarrow \int {{e^t}{t^4}\,dt = } \,{t^4}{e^t} - 3{t^3}{e^t} + 6{t^2}{e^t} - 6t{e^t} - \left[ {{t^3}{e^t} - 3{t^2}{e^t} + 6t{e^t} - 6{e^t}} \right] + 3\left[ {{t^2}{e^t} - 2t{e^t} + 2{e^t}} \right] - 6\left[ {t{e^t} - {e^t}} \right] + 6{e^t} + {c_4}\end{array}\]\[ \Rightarrow \int {{e^t}{t^4}\,dt = } \,{t^4}{e^t} - 4{t^3}{e^t} + 12{t^2}{e^t} - 24t{e^t} + 24{e^t} + {c_4}\] . . . . . . . . . . . . (vii)
Now, we will put the value of \[\int {{e^t}{t^4}} \] from (vii) to I. Thus, we will get the following equation:
\[\begin{array}{l} \Rightarrow I = \dfrac{1}{{{2^5}}}\,\left[ {{t^4}{e^t} - 4{t^3}{e^t} + 12{t^2}{e^t} - 24t{e^t} + 24{e^t}} \right] + c\\ \Rightarrow I = \dfrac{{{e^t}}}{{32}}\,\left[ {{t^4} - 4{t^3} + 12{t^2} - 24t + 24} \right] + c\end{array}\]
Now, we will put the value of y back to 2x. Thus, we will get the following result:
\[\begin{array}{l} \Rightarrow I = \dfrac{{{e^{2x}}}}{{32}}\,\left[ {{{\left( {2x} \right)}^4} - 4{{\left( {2x} \right)}^3} + 12{{\left( {2x} \right)}^2} - 24\left( {2x} \right) + 24} \right] + c\\ \Rightarrow I = \dfrac{{{e^{2x}}}}{{32}}\,\left[ {16{x^4} - 32{x^3} + 48{x^2} - 48x + 24} \right] + c\\ \Rightarrow I = \dfrac{{8{e^{2x}}}}{{32}}\,\left[ {2{x^4} - 4{x^3} + 6{x^2} - 6x + 3} \right] + c\\ \Rightarrow I = \dfrac{{{e^{2x}}}}{4}\,\left[ {2{x^4} - 4{x^3} + 6{x^2} - 6x + 3} \right] + c\end{array}\]
Hence, option (a) is correct.
Note: The shortcut method for finding the integrals of \[{e^t}{t^n}\], where n is an integer is given below:
\[\int {{e^t}{t^n}\, = } \,{e^t}\left[ {{t^n} - \dfrac{d}{{dt}}\left( {{t^n}} \right) + \dfrac{{{d^2}}}{{d{t^2}}}\left( {{t^n}} \right) - \dfrac{{{d^3}}}{{d{t^3}}}\left( {{t^n}} \right) + ............{{\left( { - 1} \right)}^n}\dfrac{{{d^n}}}{{d{t^n}}}\left( {{t^n}} \right)} \right]\]
In our case \[{\text{n}} = {\text{4}}\] so, we will get:
\[\begin{array}{l}\int {{e^t}{t^4}\, = } \,{e^t}\left[ {{t^4} - \dfrac{d}{{dt}}\left( {{t^4}} \right) + \dfrac{{{d^2}}}{{d{t^2}}}\left( {{t^4}} \right) - \dfrac{{{d^3}}}{{d{t^3}}}\left( {{t^4}} \right) + \dfrac{{{d^4}}}{{d{t^4}}}\left( {{t^4}} \right)} \right] + c\\\int {{e^t}{t^4}\, = } \,{e^t}\left[ {{t^4} - 4{t^3} + 12{t^2} - 24t + 24} \right] + c\end{array}\]
Complete step-by-step answer:
In the question given, we have to find the value of \[\int {{e^{2x}}.{x^4}dx} \]. Let its value be I. Thus, we have:
\[I = \int {{x^4}{e^{2x}}dx} \]
Now, we will put \[2x = t\] .On differentiating both sides we will get:
\[2dx = dt\]
\[ \Rightarrow dx = \dfrac{{dt}}{2}\]
Thus, we will get:
\[\begin{array}{l}I = \int {{{\left( {\dfrac{t}{2}} \right)}^4}{e^t}\left( {\dfrac{{dt}}{2}} \right)} \\I = \left( {\dfrac{1}{{{2^5}}}} \right)\int {{e^t}.{t^4}dt} \end{array}\]
Now, we will calculate the value of \[\int {{e^t}.t} \] with the help of by parts. According to by parts theorem of integration, we have:
\[\int {uv = } u\int {v - \int {u\int v } } \]
In our case \[u = t\,\,and\,\,v - {e^t}\] . Thus, we will get:
\[\begin{array}{l}\int {{e^t}.t\,dt = } \,t\int {{e^t}\,dt - \int {\dfrac{{dt}}{{dt}}{{\int {{e^t}\,\left( {dt} \right)} }^2}} } \\\int {{e^t}t\,dt = } \,t{e^t} - \int {{e^t}\,\left( {dt} \right)} \end{array}\]
\[\int {{e^t}t\,dt = } \,t{e^t} - {e^t} + {c_1}\] . . . . . . . . . . . . . (i)
Now we will calculate the value of \[\int {{e^t}{t^t}\,dt} \]. In this function, we will again use by-parts. In this case, we will take \[u = t\,\,and\,\,v = {e^t}t\] . Thus, we will get:
\[\int {{e^t}{t^2}\,dt = } \,t\int {{e^t}t\,dt - \int {\dfrac{{dt}}{{dt}}{{\int {\left( {{e^t}t\,} \right)\left( {dt} \right)} }^2}} } \] . . . . . . . . . . . . . (ii)
Now, we will put the value of \[\int {{e^t}t\,dt} \] from (i) into (ii). Thus, we will get following equation:
\[\begin{array}{l}\int {{e^t}{t^2}\,dt = } \,t\left[ {t{e^t} - {e^t}} \right] - \int {\left( {t{e^t} - {e^t}} \right)} \,dt + {c_2}\\\int {{e^t}{t^2}\,dt = } \,{t^2}{e^t} - t{e^t} - \int {t{e^t}dt + \int {{e^t}} dt + {c_2}} \,\\\int {{e^t}{t^2}\,dt = } \,{t^2}{e^t} - t{e^t} - \left( {t{e^t} - {e^t}} \right)\, + {e^t} + {c_2}\end{array}\]
\[\int {{e^t}{t^2}\,dt = } \,{t^2}{e^t} - 2t{e^t}\, + 2{e^t} + {c_2}\] . . . . . . . . . . . . . (iii)
Now, we will calculate the value of \[\int {{e^t}{t^3}} \] by the help of by-parts. In this case, we will take \[u = t\,\,and\,\,v = {e^t}{t^2}\] . Thus, we will get:
\[\int {{e^t}{t^3}\,dt = } \,t\int {{e^t}{t^2}\,dt} - \int {\dfrac{{dt}}{{dt}}\int {\left( {{e^t}{t^2}} \right)} } \,{\left( {dt} \right)^2}\] . . . . . . . . . . . . . (iv)
Now, we will put the value of \[{e^t}{t^2}\] from (iii) to (iv). Thus, we will get:
\[\begin{array}{l} \Rightarrow \int {{e^t}{t^3}\,dt = } \,t\left[ {{t^2}{e^t} - 2t{e^t} + 2{e^t}} \right] - \int {\left( {{t^2}{e^t} - 2t{e^t} + 2{e^t}} \right)} \,dt + {c_3}\\ \Rightarrow \int {{e^t}{t^3}\,dt = } \,{t^3}{e^t} - 2{t^2}{e^t} + 2t{e^t} - \int {{t^2}{e^t}dt + 2\int {t{e^t}dt} - 2\int {{e^t}dt} \,} + {c_3}\\ \Rightarrow \int {{e^t}{t^3}\,dt = } \,{t^3}{e^t} - 2{t^2}{e^t} + 2t{e^t} - \left[ {{t^2}{e^t} - 2t{e^t} + 2{e^t}} \right] + 2\left[ {t{e^t} - {e^t}} \right] - 2{e^t} + {c_3}\\ \Rightarrow \int {{e^t}{t^3}\,dt = } \,{t^3}{e^t} - 2{t^2}{e^t} + 2t{e^t} - {t^2}{e^t} + 2t{e^t} - 2{e^t} + 2t{e^t} - 2{e^t} - 2{e^t} + {c_3}\end{array}\]
\[ \Rightarrow \int {{e^t}{t^3}\,dt = } \,{t^3}{e^t} - 3{t^2}{e^t} - 6t{e^t} - 6{e^t} + {c_3}\] . . . . . . . . . . . . . (v)
Now, we will calculate the value of \[{e^t}{t^4}dt\] by the help of by-parts. In this case, we will take \[u = t\,\,and\,\,v = {e^t}{t^3}\] . Thus, we will get:
\[\int {{e^t}{t^4}\,dt = } \,t\int {{e^t}{t^3}\,dt} - \int {\dfrac{{dt}}{{dt}}\int {\left( {{e^t}{t^3}} \right)} } \,{\left( {dt} \right)^2}\] . . . . . . . . . . . . (vi)
Now, we will put the value of \[{e^t}{t^3}\,dt\] from (v) to (vi). Thus, we will get:
\[\begin{array}{l} \Rightarrow \int {{e^t}{t^4}\,dt = } \,t\left[ {{t^3}{e^t} - 3{t^2}{e^t} + 6t{e^t} - 6{e^t}} \right] - \int {\left( {{t^3}{e^t} - 3{t^2}{e^t} + 6t{e^t} - 6{e^t}} \right)} \,dt + {c_4}\\ \Rightarrow \int {{e^t}{t^4}\,dt = } \,{t^4}{e^t} - 3{t^3}{e^t} + 6{t^2}{e^t} - 6t{e^t} - \int {{t^3}{e^t}dt + \int {3{t^2}{e^t}dt} - 6\int {t{e^t}dt} \,} + 6\int {{e^t}dt} \, + {c_4}\\ \Rightarrow \int {{e^t}{t^4}\,dt = } \,{t^4}{e^t} - 3{t^3}{e^t} + 6{t^2}{e^t} - 6t{e^t} - \left[ {{t^3}{e^t} - 3{t^2}{e^t} + 6t{e^t} - 6{e^t}} \right] + 3\left[ {{t^2}{e^t} - 2t{e^t} + 2{e^t}} \right] - 6\left[ {t{e^t} - {e^t}} \right] + 6{e^t} + {c_4}\end{array}\]\[ \Rightarrow \int {{e^t}{t^4}\,dt = } \,{t^4}{e^t} - 4{t^3}{e^t} + 12{t^2}{e^t} - 24t{e^t} + 24{e^t} + {c_4}\] . . . . . . . . . . . . (vii)
Now, we will put the value of \[\int {{e^t}{t^4}} \] from (vii) to I. Thus, we will get the following equation:
\[\begin{array}{l} \Rightarrow I = \dfrac{1}{{{2^5}}}\,\left[ {{t^4}{e^t} - 4{t^3}{e^t} + 12{t^2}{e^t} - 24t{e^t} + 24{e^t}} \right] + c\\ \Rightarrow I = \dfrac{{{e^t}}}{{32}}\,\left[ {{t^4} - 4{t^3} + 12{t^2} - 24t + 24} \right] + c\end{array}\]
Now, we will put the value of y back to 2x. Thus, we will get the following result:
\[\begin{array}{l} \Rightarrow I = \dfrac{{{e^{2x}}}}{{32}}\,\left[ {{{\left( {2x} \right)}^4} - 4{{\left( {2x} \right)}^3} + 12{{\left( {2x} \right)}^2} - 24\left( {2x} \right) + 24} \right] + c\\ \Rightarrow I = \dfrac{{{e^{2x}}}}{{32}}\,\left[ {16{x^4} - 32{x^3} + 48{x^2} - 48x + 24} \right] + c\\ \Rightarrow I = \dfrac{{8{e^{2x}}}}{{32}}\,\left[ {2{x^4} - 4{x^3} + 6{x^2} - 6x + 3} \right] + c\\ \Rightarrow I = \dfrac{{{e^{2x}}}}{4}\,\left[ {2{x^4} - 4{x^3} + 6{x^2} - 6x + 3} \right] + c\end{array}\]
Hence, option (a) is correct.
Note: The shortcut method for finding the integrals of \[{e^t}{t^n}\], where n is an integer is given below:
\[\int {{e^t}{t^n}\, = } \,{e^t}\left[ {{t^n} - \dfrac{d}{{dt}}\left( {{t^n}} \right) + \dfrac{{{d^2}}}{{d{t^2}}}\left( {{t^n}} \right) - \dfrac{{{d^3}}}{{d{t^3}}}\left( {{t^n}} \right) + ............{{\left( { - 1} \right)}^n}\dfrac{{{d^n}}}{{d{t^n}}}\left( {{t^n}} \right)} \right]\]
In our case \[{\text{n}} = {\text{4}}\] so, we will get:
\[\begin{array}{l}\int {{e^t}{t^4}\, = } \,{e^t}\left[ {{t^4} - \dfrac{d}{{dt}}\left( {{t^4}} \right) + \dfrac{{{d^2}}}{{d{t^2}}}\left( {{t^4}} \right) - \dfrac{{{d^3}}}{{d{t^3}}}\left( {{t^4}} \right) + \dfrac{{{d^4}}}{{d{t^4}}}\left( {{t^4}} \right)} \right] + c\\\int {{e^t}{t^4}\, = } \,{e^t}\left[ {{t^4} - 4{t^3} + 12{t^2} - 24t + 24} \right] + c\end{array}\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

