
Solve the given indefinite integral:\[\int {{x^4}{e^{2x}}dx = } \]
A. \[\dfrac{{{e^{2x}}}}{4}\left( {2{x^4} - 4{x^3} + 6{x^2} - 6x + 3} \right) + c\]
B. \[\dfrac{{{e^{2x}}}}{2}\left( {2{x^4} - 4{x^3} + 6{x^2} - 6x + 3} \right) + c\]
C. \[\dfrac{{{e^{2x}}}}{8}\left( {2{x^4} + 4{x^3} + 6{x^2} + 6x + 3} \right) + c\]
D. \[\dfrac{{{e^{2x}}}}{4}\left( {2{x^4} + 4{x^3} + 6{x^2} + 6x + 3} \right) + c\]
Answer
598.8k+ views
Hint: To solve the given question above we will first put \[{\text{2x}} = {\text{t}}\] and convert whole integrals in terms of t. Now use the integration by parts method to integrate the given function and at last replace t with its original value.
Complete step-by-step answer:
In the question given, we have to find the value of \[\int {{e^{2x}}.{x^4}dx} \]. Let its value be I. Thus, we have:
\[I = \int {{x^4}{e^{2x}}dx} \]
Now, we will put \[2x = t\] .On differentiating both sides we will get:
\[2dx = dt\]
\[ \Rightarrow dx = \dfrac{{dt}}{2}\]
Thus, we will get:
\[\begin{array}{l}I = \int {{{\left( {\dfrac{t}{2}} \right)}^4}{e^t}\left( {\dfrac{{dt}}{2}} \right)} \\I = \left( {\dfrac{1}{{{2^5}}}} \right)\int {{e^t}.{t^4}dt} \end{array}\]
Now, we will calculate the value of \[\int {{e^t}.t} \] with the help of by parts. According to by parts theorem of integration, we have:
\[\int {uv = } u\int {v - \int {u\int v } } \]
In our case \[u = t\,\,and\,\,v - {e^t}\] . Thus, we will get:
\[\begin{array}{l}\int {{e^t}.t\,dt = } \,t\int {{e^t}\,dt - \int {\dfrac{{dt}}{{dt}}{{\int {{e^t}\,\left( {dt} \right)} }^2}} } \\\int {{e^t}t\,dt = } \,t{e^t} - \int {{e^t}\,\left( {dt} \right)} \end{array}\]
\[\int {{e^t}t\,dt = } \,t{e^t} - {e^t} + {c_1}\] . . . . . . . . . . . . . (i)
Now we will calculate the value of \[\int {{e^t}{t^t}\,dt} \]. In this function, we will again use by-parts. In this case, we will take \[u = t\,\,and\,\,v = {e^t}t\] . Thus, we will get:
\[\int {{e^t}{t^2}\,dt = } \,t\int {{e^t}t\,dt - \int {\dfrac{{dt}}{{dt}}{{\int {\left( {{e^t}t\,} \right)\left( {dt} \right)} }^2}} } \] . . . . . . . . . . . . . (ii)
Now, we will put the value of \[\int {{e^t}t\,dt} \] from (i) into (ii). Thus, we will get following equation:
\[\begin{array}{l}\int {{e^t}{t^2}\,dt = } \,t\left[ {t{e^t} - {e^t}} \right] - \int {\left( {t{e^t} - {e^t}} \right)} \,dt + {c_2}\\\int {{e^t}{t^2}\,dt = } \,{t^2}{e^t} - t{e^t} - \int {t{e^t}dt + \int {{e^t}} dt + {c_2}} \,\\\int {{e^t}{t^2}\,dt = } \,{t^2}{e^t} - t{e^t} - \left( {t{e^t} - {e^t}} \right)\, + {e^t} + {c_2}\end{array}\]
\[\int {{e^t}{t^2}\,dt = } \,{t^2}{e^t} - 2t{e^t}\, + 2{e^t} + {c_2}\] . . . . . . . . . . . . . (iii)
Now, we will calculate the value of \[\int {{e^t}{t^3}} \] by the help of by-parts. In this case, we will take \[u = t\,\,and\,\,v = {e^t}{t^2}\] . Thus, we will get:
\[\int {{e^t}{t^3}\,dt = } \,t\int {{e^t}{t^2}\,dt} - \int {\dfrac{{dt}}{{dt}}\int {\left( {{e^t}{t^2}} \right)} } \,{\left( {dt} \right)^2}\] . . . . . . . . . . . . . (iv)
Now, we will put the value of \[{e^t}{t^2}\] from (iii) to (iv). Thus, we will get:
\[\begin{array}{l} \Rightarrow \int {{e^t}{t^3}\,dt = } \,t\left[ {{t^2}{e^t} - 2t{e^t} + 2{e^t}} \right] - \int {\left( {{t^2}{e^t} - 2t{e^t} + 2{e^t}} \right)} \,dt + {c_3}\\ \Rightarrow \int {{e^t}{t^3}\,dt = } \,{t^3}{e^t} - 2{t^2}{e^t} + 2t{e^t} - \int {{t^2}{e^t}dt + 2\int {t{e^t}dt} - 2\int {{e^t}dt} \,} + {c_3}\\ \Rightarrow \int {{e^t}{t^3}\,dt = } \,{t^3}{e^t} - 2{t^2}{e^t} + 2t{e^t} - \left[ {{t^2}{e^t} - 2t{e^t} + 2{e^t}} \right] + 2\left[ {t{e^t} - {e^t}} \right] - 2{e^t} + {c_3}\\ \Rightarrow \int {{e^t}{t^3}\,dt = } \,{t^3}{e^t} - 2{t^2}{e^t} + 2t{e^t} - {t^2}{e^t} + 2t{e^t} - 2{e^t} + 2t{e^t} - 2{e^t} - 2{e^t} + {c_3}\end{array}\]
\[ \Rightarrow \int {{e^t}{t^3}\,dt = } \,{t^3}{e^t} - 3{t^2}{e^t} - 6t{e^t} - 6{e^t} + {c_3}\] . . . . . . . . . . . . . (v)
Now, we will calculate the value of \[{e^t}{t^4}dt\] by the help of by-parts. In this case, we will take \[u = t\,\,and\,\,v = {e^t}{t^3}\] . Thus, we will get:
\[\int {{e^t}{t^4}\,dt = } \,t\int {{e^t}{t^3}\,dt} - \int {\dfrac{{dt}}{{dt}}\int {\left( {{e^t}{t^3}} \right)} } \,{\left( {dt} \right)^2}\] . . . . . . . . . . . . (vi)
Now, we will put the value of \[{e^t}{t^3}\,dt\] from (v) to (vi). Thus, we will get:
\[\begin{array}{l} \Rightarrow \int {{e^t}{t^4}\,dt = } \,t\left[ {{t^3}{e^t} - 3{t^2}{e^t} + 6t{e^t} - 6{e^t}} \right] - \int {\left( {{t^3}{e^t} - 3{t^2}{e^t} + 6t{e^t} - 6{e^t}} \right)} \,dt + {c_4}\\ \Rightarrow \int {{e^t}{t^4}\,dt = } \,{t^4}{e^t} - 3{t^3}{e^t} + 6{t^2}{e^t} - 6t{e^t} - \int {{t^3}{e^t}dt + \int {3{t^2}{e^t}dt} - 6\int {t{e^t}dt} \,} + 6\int {{e^t}dt} \, + {c_4}\\ \Rightarrow \int {{e^t}{t^4}\,dt = } \,{t^4}{e^t} - 3{t^3}{e^t} + 6{t^2}{e^t} - 6t{e^t} - \left[ {{t^3}{e^t} - 3{t^2}{e^t} + 6t{e^t} - 6{e^t}} \right] + 3\left[ {{t^2}{e^t} - 2t{e^t} + 2{e^t}} \right] - 6\left[ {t{e^t} - {e^t}} \right] + 6{e^t} + {c_4}\end{array}\]\[ \Rightarrow \int {{e^t}{t^4}\,dt = } \,{t^4}{e^t} - 4{t^3}{e^t} + 12{t^2}{e^t} - 24t{e^t} + 24{e^t} + {c_4}\] . . . . . . . . . . . . (vii)
Now, we will put the value of \[\int {{e^t}{t^4}} \] from (vii) to I. Thus, we will get the following equation:
\[\begin{array}{l} \Rightarrow I = \dfrac{1}{{{2^5}}}\,\left[ {{t^4}{e^t} - 4{t^3}{e^t} + 12{t^2}{e^t} - 24t{e^t} + 24{e^t}} \right] + c\\ \Rightarrow I = \dfrac{{{e^t}}}{{32}}\,\left[ {{t^4} - 4{t^3} + 12{t^2} - 24t + 24} \right] + c\end{array}\]
Now, we will put the value of y back to 2x. Thus, we will get the following result:
\[\begin{array}{l} \Rightarrow I = \dfrac{{{e^{2x}}}}{{32}}\,\left[ {{{\left( {2x} \right)}^4} - 4{{\left( {2x} \right)}^3} + 12{{\left( {2x} \right)}^2} - 24\left( {2x} \right) + 24} \right] + c\\ \Rightarrow I = \dfrac{{{e^{2x}}}}{{32}}\,\left[ {16{x^4} - 32{x^3} + 48{x^2} - 48x + 24} \right] + c\\ \Rightarrow I = \dfrac{{8{e^{2x}}}}{{32}}\,\left[ {2{x^4} - 4{x^3} + 6{x^2} - 6x + 3} \right] + c\\ \Rightarrow I = \dfrac{{{e^{2x}}}}{4}\,\left[ {2{x^4} - 4{x^3} + 6{x^2} - 6x + 3} \right] + c\end{array}\]
Hence, option (a) is correct.
Note: The shortcut method for finding the integrals of \[{e^t}{t^n}\], where n is an integer is given below:
\[\int {{e^t}{t^n}\, = } \,{e^t}\left[ {{t^n} - \dfrac{d}{{dt}}\left( {{t^n}} \right) + \dfrac{{{d^2}}}{{d{t^2}}}\left( {{t^n}} \right) - \dfrac{{{d^3}}}{{d{t^3}}}\left( {{t^n}} \right) + ............{{\left( { - 1} \right)}^n}\dfrac{{{d^n}}}{{d{t^n}}}\left( {{t^n}} \right)} \right]\]
In our case \[{\text{n}} = {\text{4}}\] so, we will get:
\[\begin{array}{l}\int {{e^t}{t^4}\, = } \,{e^t}\left[ {{t^4} - \dfrac{d}{{dt}}\left( {{t^4}} \right) + \dfrac{{{d^2}}}{{d{t^2}}}\left( {{t^4}} \right) - \dfrac{{{d^3}}}{{d{t^3}}}\left( {{t^4}} \right) + \dfrac{{{d^4}}}{{d{t^4}}}\left( {{t^4}} \right)} \right] + c\\\int {{e^t}{t^4}\, = } \,{e^t}\left[ {{t^4} - 4{t^3} + 12{t^2} - 24t + 24} \right] + c\end{array}\]
Complete step-by-step answer:
In the question given, we have to find the value of \[\int {{e^{2x}}.{x^4}dx} \]. Let its value be I. Thus, we have:
\[I = \int {{x^4}{e^{2x}}dx} \]
Now, we will put \[2x = t\] .On differentiating both sides we will get:
\[2dx = dt\]
\[ \Rightarrow dx = \dfrac{{dt}}{2}\]
Thus, we will get:
\[\begin{array}{l}I = \int {{{\left( {\dfrac{t}{2}} \right)}^4}{e^t}\left( {\dfrac{{dt}}{2}} \right)} \\I = \left( {\dfrac{1}{{{2^5}}}} \right)\int {{e^t}.{t^4}dt} \end{array}\]
Now, we will calculate the value of \[\int {{e^t}.t} \] with the help of by parts. According to by parts theorem of integration, we have:
\[\int {uv = } u\int {v - \int {u\int v } } \]
In our case \[u = t\,\,and\,\,v - {e^t}\] . Thus, we will get:
\[\begin{array}{l}\int {{e^t}.t\,dt = } \,t\int {{e^t}\,dt - \int {\dfrac{{dt}}{{dt}}{{\int {{e^t}\,\left( {dt} \right)} }^2}} } \\\int {{e^t}t\,dt = } \,t{e^t} - \int {{e^t}\,\left( {dt} \right)} \end{array}\]
\[\int {{e^t}t\,dt = } \,t{e^t} - {e^t} + {c_1}\] . . . . . . . . . . . . . (i)
Now we will calculate the value of \[\int {{e^t}{t^t}\,dt} \]. In this function, we will again use by-parts. In this case, we will take \[u = t\,\,and\,\,v = {e^t}t\] . Thus, we will get:
\[\int {{e^t}{t^2}\,dt = } \,t\int {{e^t}t\,dt - \int {\dfrac{{dt}}{{dt}}{{\int {\left( {{e^t}t\,} \right)\left( {dt} \right)} }^2}} } \] . . . . . . . . . . . . . (ii)
Now, we will put the value of \[\int {{e^t}t\,dt} \] from (i) into (ii). Thus, we will get following equation:
\[\begin{array}{l}\int {{e^t}{t^2}\,dt = } \,t\left[ {t{e^t} - {e^t}} \right] - \int {\left( {t{e^t} - {e^t}} \right)} \,dt + {c_2}\\\int {{e^t}{t^2}\,dt = } \,{t^2}{e^t} - t{e^t} - \int {t{e^t}dt + \int {{e^t}} dt + {c_2}} \,\\\int {{e^t}{t^2}\,dt = } \,{t^2}{e^t} - t{e^t} - \left( {t{e^t} - {e^t}} \right)\, + {e^t} + {c_2}\end{array}\]
\[\int {{e^t}{t^2}\,dt = } \,{t^2}{e^t} - 2t{e^t}\, + 2{e^t} + {c_2}\] . . . . . . . . . . . . . (iii)
Now, we will calculate the value of \[\int {{e^t}{t^3}} \] by the help of by-parts. In this case, we will take \[u = t\,\,and\,\,v = {e^t}{t^2}\] . Thus, we will get:
\[\int {{e^t}{t^3}\,dt = } \,t\int {{e^t}{t^2}\,dt} - \int {\dfrac{{dt}}{{dt}}\int {\left( {{e^t}{t^2}} \right)} } \,{\left( {dt} \right)^2}\] . . . . . . . . . . . . . (iv)
Now, we will put the value of \[{e^t}{t^2}\] from (iii) to (iv). Thus, we will get:
\[\begin{array}{l} \Rightarrow \int {{e^t}{t^3}\,dt = } \,t\left[ {{t^2}{e^t} - 2t{e^t} + 2{e^t}} \right] - \int {\left( {{t^2}{e^t} - 2t{e^t} + 2{e^t}} \right)} \,dt + {c_3}\\ \Rightarrow \int {{e^t}{t^3}\,dt = } \,{t^3}{e^t} - 2{t^2}{e^t} + 2t{e^t} - \int {{t^2}{e^t}dt + 2\int {t{e^t}dt} - 2\int {{e^t}dt} \,} + {c_3}\\ \Rightarrow \int {{e^t}{t^3}\,dt = } \,{t^3}{e^t} - 2{t^2}{e^t} + 2t{e^t} - \left[ {{t^2}{e^t} - 2t{e^t} + 2{e^t}} \right] + 2\left[ {t{e^t} - {e^t}} \right] - 2{e^t} + {c_3}\\ \Rightarrow \int {{e^t}{t^3}\,dt = } \,{t^3}{e^t} - 2{t^2}{e^t} + 2t{e^t} - {t^2}{e^t} + 2t{e^t} - 2{e^t} + 2t{e^t} - 2{e^t} - 2{e^t} + {c_3}\end{array}\]
\[ \Rightarrow \int {{e^t}{t^3}\,dt = } \,{t^3}{e^t} - 3{t^2}{e^t} - 6t{e^t} - 6{e^t} + {c_3}\] . . . . . . . . . . . . . (v)
Now, we will calculate the value of \[{e^t}{t^4}dt\] by the help of by-parts. In this case, we will take \[u = t\,\,and\,\,v = {e^t}{t^3}\] . Thus, we will get:
\[\int {{e^t}{t^4}\,dt = } \,t\int {{e^t}{t^3}\,dt} - \int {\dfrac{{dt}}{{dt}}\int {\left( {{e^t}{t^3}} \right)} } \,{\left( {dt} \right)^2}\] . . . . . . . . . . . . (vi)
Now, we will put the value of \[{e^t}{t^3}\,dt\] from (v) to (vi). Thus, we will get:
\[\begin{array}{l} \Rightarrow \int {{e^t}{t^4}\,dt = } \,t\left[ {{t^3}{e^t} - 3{t^2}{e^t} + 6t{e^t} - 6{e^t}} \right] - \int {\left( {{t^3}{e^t} - 3{t^2}{e^t} + 6t{e^t} - 6{e^t}} \right)} \,dt + {c_4}\\ \Rightarrow \int {{e^t}{t^4}\,dt = } \,{t^4}{e^t} - 3{t^3}{e^t} + 6{t^2}{e^t} - 6t{e^t} - \int {{t^3}{e^t}dt + \int {3{t^2}{e^t}dt} - 6\int {t{e^t}dt} \,} + 6\int {{e^t}dt} \, + {c_4}\\ \Rightarrow \int {{e^t}{t^4}\,dt = } \,{t^4}{e^t} - 3{t^3}{e^t} + 6{t^2}{e^t} - 6t{e^t} - \left[ {{t^3}{e^t} - 3{t^2}{e^t} + 6t{e^t} - 6{e^t}} \right] + 3\left[ {{t^2}{e^t} - 2t{e^t} + 2{e^t}} \right] - 6\left[ {t{e^t} - {e^t}} \right] + 6{e^t} + {c_4}\end{array}\]\[ \Rightarrow \int {{e^t}{t^4}\,dt = } \,{t^4}{e^t} - 4{t^3}{e^t} + 12{t^2}{e^t} - 24t{e^t} + 24{e^t} + {c_4}\] . . . . . . . . . . . . (vii)
Now, we will put the value of \[\int {{e^t}{t^4}} \] from (vii) to I. Thus, we will get the following equation:
\[\begin{array}{l} \Rightarrow I = \dfrac{1}{{{2^5}}}\,\left[ {{t^4}{e^t} - 4{t^3}{e^t} + 12{t^2}{e^t} - 24t{e^t} + 24{e^t}} \right] + c\\ \Rightarrow I = \dfrac{{{e^t}}}{{32}}\,\left[ {{t^4} - 4{t^3} + 12{t^2} - 24t + 24} \right] + c\end{array}\]
Now, we will put the value of y back to 2x. Thus, we will get the following result:
\[\begin{array}{l} \Rightarrow I = \dfrac{{{e^{2x}}}}{{32}}\,\left[ {{{\left( {2x} \right)}^4} - 4{{\left( {2x} \right)}^3} + 12{{\left( {2x} \right)}^2} - 24\left( {2x} \right) + 24} \right] + c\\ \Rightarrow I = \dfrac{{{e^{2x}}}}{{32}}\,\left[ {16{x^4} - 32{x^3} + 48{x^2} - 48x + 24} \right] + c\\ \Rightarrow I = \dfrac{{8{e^{2x}}}}{{32}}\,\left[ {2{x^4} - 4{x^3} + 6{x^2} - 6x + 3} \right] + c\\ \Rightarrow I = \dfrac{{{e^{2x}}}}{4}\,\left[ {2{x^4} - 4{x^3} + 6{x^2} - 6x + 3} \right] + c\end{array}\]
Hence, option (a) is correct.
Note: The shortcut method for finding the integrals of \[{e^t}{t^n}\], where n is an integer is given below:
\[\int {{e^t}{t^n}\, = } \,{e^t}\left[ {{t^n} - \dfrac{d}{{dt}}\left( {{t^n}} \right) + \dfrac{{{d^2}}}{{d{t^2}}}\left( {{t^n}} \right) - \dfrac{{{d^3}}}{{d{t^3}}}\left( {{t^n}} \right) + ............{{\left( { - 1} \right)}^n}\dfrac{{{d^n}}}{{d{t^n}}}\left( {{t^n}} \right)} \right]\]
In our case \[{\text{n}} = {\text{4}}\] so, we will get:
\[\begin{array}{l}\int {{e^t}{t^4}\, = } \,{e^t}\left[ {{t^4} - \dfrac{d}{{dt}}\left( {{t^4}} \right) + \dfrac{{{d^2}}}{{d{t^2}}}\left( {{t^4}} \right) - \dfrac{{{d^3}}}{{d{t^3}}}\left( {{t^4}} \right) + \dfrac{{{d^4}}}{{d{t^4}}}\left( {{t^4}} \right)} \right] + c\\\int {{e^t}{t^4}\, = } \,{e^t}\left[ {{t^4} - 4{t^3} + 12{t^2} - 24t + 24} \right] + c\end{array}\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

