
Solve the given determinant for x:
$\left| \begin{align}
x-2 \;\;\;\; \;\;\;\; & 2x-3 & 3x-4 \\
x-4 \;\;\;\; \;\;\;\; & 2x-9 & 3x-16 \\
x-8 \;\;\;\; \;\;\;\; & 2x-27 & 3x-64 \\
\end{align} \right|=0$
(A). $\dfrac{7}{4}$
(B). $4$
(C). $\dfrac{28}{13}$
(D). $\dfrac{14}{9}$
Answer
601.5k+ views
Hint: Apply the transformations on row 1 and row 2 of the given determinant. The transformation that we are going to do is to transform row 1 by subtracting row 2 from row 1 and to transform row 2 by subtracting row 3 from row 2 then expand along row 1 and then solve the equation to find the value of x.
Complete step-by-step solution -
The determinant equation which is given above:
$\left| \begin{align}
x-2 \;\;\;\; \;\;\;\; & 2x-3 & 3x-4 \\
x-4 \;\;\;\; \;\;\;\; & 2x-9 & 3x-16 \\
x-8 \;\;\;\; \;\;\;\; & 2x-27 & 3x-64 \\
\end{align} \right|=0$
We are going to transform row 1 of the above determinant by subtracting row 2 from row 1 as follows:
$\left| \begin{align}
2 \;\;\;\; \;\;\;\;& 6 & 12\\
x-4 \;\;\;\; \;\;\;\;& 2x-9 & 3x-16 \\
x-8 \;\;\;\; \;\;\;\;& 2x-27 & 3x-64 \\
\end{align} \right|=0$
Now, we are going to transform row 2 by subtracting row 3 from row 2 as follows:
$\left| \begin{align}
2 \;\;\;\; \;\;\;\;& 6 & 12 \\
4 \;\;\;\; \;\;\;\;& 18 & 48 \\
x-8 \;\;\;\; \;\;\;\;& 2x-27 & 3x-64 \\
\end{align} \right|=0$
Expanding the above determinant along the first row we get,
$\begin{align}
& 2\left( 18\left( 3x-64 \right)-48\left( 2x-27 \right) \right)-6\left( 4\left( 3x-64 \right)-48\left( x-8 \right) \right)+12\left( 4\left( 2x-27 \right)-18\left( x-8 \right) \right)=0 \\
& \Rightarrow 2\left( 54x-1152-96x+1296 \right)-6\left( 12x-256-48x+384 \right)+12\left( 8x-108-18x+144 \right)=0 \\
& \Rightarrow 2\left( -42x+144 \right)-6\left( -36x+128 \right)+12\left( -10x+36 \right)=0 \\
& \Rightarrow -84x+288+216x-768-120x+432=0 \\
& \Rightarrow 12x-48=0 \\
& \Rightarrow x=4 \\
\end{align}$
From the above solution, we get the value of x is equal to 4.
Hence, the correct option is (b).
Note: You can check whether the value of x that we have got is correct or not by substituting the value of x in the given determinant and see whether by plugging the value of x will make the determinant value 0 or not.
Substituting the value of x = 4 in the given determinant we get,
$\left| \begin{align}
x-2 \;\;\;\; \;\;\;\;& 2x-3 & 3x-4 \\
x-4 \;\;\;\; \;\;\;\;& 2x-9 & 3x-16 \\
x-8 \;\;\;\; \;\;\;\;& 2x-27 & 3x-64 \\
\end{align} \right| $
$ \Rightarrow \left| \begin{align}
2 \;\;\;\; \;\;\;\;& 5 & 8 \\
0 \;\;\;\; \;\;\;\;& -1 & -4 \\
-4 \;\;\;\; \;\;\;\;& -19 & -52 \\
\end{align} \right| \\
$
Now, expanding the above determinant along second row to get the value of the determinant we get,
$\begin{align}
& 0-1\left( 2\left( -52 \right)+32 \right)+4\left( -38+20 \right) \\
& =-1\left( -104+32 \right)+4\left( -18 \right) \\
& =72-72 = 0 \\
\end{align}$
Complete step-by-step solution -
The determinant equation which is given above:
$\left| \begin{align}
x-2 \;\;\;\; \;\;\;\; & 2x-3 & 3x-4 \\
x-4 \;\;\;\; \;\;\;\; & 2x-9 & 3x-16 \\
x-8 \;\;\;\; \;\;\;\; & 2x-27 & 3x-64 \\
\end{align} \right|=0$
We are going to transform row 1 of the above determinant by subtracting row 2 from row 1 as follows:
$\left| \begin{align}
2 \;\;\;\; \;\;\;\;& 6 & 12\\
x-4 \;\;\;\; \;\;\;\;& 2x-9 & 3x-16 \\
x-8 \;\;\;\; \;\;\;\;& 2x-27 & 3x-64 \\
\end{align} \right|=0$
Now, we are going to transform row 2 by subtracting row 3 from row 2 as follows:
$\left| \begin{align}
2 \;\;\;\; \;\;\;\;& 6 & 12 \\
4 \;\;\;\; \;\;\;\;& 18 & 48 \\
x-8 \;\;\;\; \;\;\;\;& 2x-27 & 3x-64 \\
\end{align} \right|=0$
Expanding the above determinant along the first row we get,
$\begin{align}
& 2\left( 18\left( 3x-64 \right)-48\left( 2x-27 \right) \right)-6\left( 4\left( 3x-64 \right)-48\left( x-8 \right) \right)+12\left( 4\left( 2x-27 \right)-18\left( x-8 \right) \right)=0 \\
& \Rightarrow 2\left( 54x-1152-96x+1296 \right)-6\left( 12x-256-48x+384 \right)+12\left( 8x-108-18x+144 \right)=0 \\
& \Rightarrow 2\left( -42x+144 \right)-6\left( -36x+128 \right)+12\left( -10x+36 \right)=0 \\
& \Rightarrow -84x+288+216x-768-120x+432=0 \\
& \Rightarrow 12x-48=0 \\
& \Rightarrow x=4 \\
\end{align}$
From the above solution, we get the value of x is equal to 4.
Hence, the correct option is (b).
Note: You can check whether the value of x that we have got is correct or not by substituting the value of x in the given determinant and see whether by plugging the value of x will make the determinant value 0 or not.
Substituting the value of x = 4 in the given determinant we get,
$\left| \begin{align}
x-2 \;\;\;\; \;\;\;\;& 2x-3 & 3x-4 \\
x-4 \;\;\;\; \;\;\;\;& 2x-9 & 3x-16 \\
x-8 \;\;\;\; \;\;\;\;& 2x-27 & 3x-64 \\
\end{align} \right| $
$ \Rightarrow \left| \begin{align}
2 \;\;\;\; \;\;\;\;& 5 & 8 \\
0 \;\;\;\; \;\;\;\;& -1 & -4 \\
-4 \;\;\;\; \;\;\;\;& -19 & -52 \\
\end{align} \right| \\
$
Now, expanding the above determinant along second row to get the value of the determinant we get,
$\begin{align}
& 0-1\left( 2\left( -52 \right)+32 \right)+4\left( -38+20 \right) \\
& =-1\left( -104+32 \right)+4\left( -18 \right) \\
& =72-72 = 0 \\
\end{align}$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

