
Solve the given cubic equation:- $16{{\cos }^{6}}x-25{{\cos }^{4}}x+11{{\cos }^{2}}x-2=0$
Answer
556.2k+ views
Hint: Take $\text{co}{{\text{s}}^{\text{2}}}\text{x=t}$to form a cubic equation. The reduced cubic equation’s one factor can be formed by using the hit and trial method and reducing it to a quadratic equation. Solve this quadratic equation by making a factor.
Formula used:
By substitution find one factor of cubic equation & then make factors of a quadratic equation.
$\begin{align}
& a{{x}^{2}}+bx+c=0 \\
& x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
\end{align}$
Complete step-by-step answer:
$16{{\cos }^{6}}x-25{{\cos }^{4}}x+11{{\cos }^{2}}x-2=0$
Put
$\begin{align}
& {{\cos }^{2}}x=t \\
& 16\left[ {{t}^{3}} \right]-25\text{ }{{t}^{2}}+11\text{ }t-2=0......(1) \\
& \text{By substitution we find one factor of cubic equation}\text{.} \\
\end{align}$
Put
$t=1$ in equation (1)
$\begin{align}
& 16{{\left( 1 \right)}^{3}}-25{{\left( 1 \right)}^{2}}+11\left( 1 \right)-2 \\
& =16-25+11-2 \\
& =27-27=0 \\
\end{align}$
Therefore t = 1 is the solution of cubic equation $16\text{ }{{t}^{3}}-25\text{ }{{t}^{2}}+11\text{ }t-2$.
[By long division]
$\text{16 }{{t}^{3}}-25\text{ }{{t}^{2}}+11\text{ t}-2=\left( t-1 \right)\left( 16\text{ }{{t}^{2}}-9t+2 \right)$
Now we will solve the quadratic equation
$\left( 16\text{ }{{t}^{2}}-9t+2 \right)$
\[\begin{align}
&\Rightarrow 16\text{ }{{t}^{2}}-9\text{ }t+2=0 \\
& \Rightarrow a=16\text{ } \\
&\Rightarrow b=-9 \\
& c=2 \\
\end{align}\]
\[\begin{align}
& \Rightarrow t=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
& \Rightarrow t =\dfrac{-\left( -9 \right)\pm \sqrt{{{\left( -9 \right)}^{2}}-4\times 16\times 2}}{2\times 16} \\
& \Rightarrow t =\dfrac{9\pm \sqrt{81-128}}{32} \\
&\Rightarrow t=\dfrac{9\pm \sqrt{-47}}{32}\text{ No, real roots because}\sqrt{-47}\text{ is not a real number} \\
& \text{Hence 16 }{{t}^{3}}-25\text{ }{{t}^{2}}+11\text{ }t-2=\left( t-1 \right)\left( 16\,{{t}^{2}}-9t+2 \right) \\
\end{align}\]
\[\text{Substitute }=t={{\cos }^{2}}~x\]
$\begin{align}
& \therefore \left( {{\cos }^{2}}~x-1 \right)\left( 16{{\cos }^{4}}~x-9{{\cos }^{2}}~x+2 \right)=0 \\
& \Rightarrow {{\cos }^{2}}~x-1=0\text{ or }16{{\cos }^{4}}~x-9{{\cos }^{2}}~x+2=0 \\
&\Rightarrow {{\cos }^{2}}~x=1 \\
& \Rightarrow {{\cos }^{2}}~x=\pm 1 \\
\end{align}$
Additional information:
We can solve quadratic problem by splitting the middle term if we are not able to solve the quadratic problem by splitting the middle term we can use $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ formula.
Note: For higher powers we have to substitute like in this power was 6. So we substitute ${{\cos }^{2}}~x=t$ so we get a cubic calculation then factorize.
Formula used:
By substitution find one factor of cubic equation & then make factors of a quadratic equation.
$\begin{align}
& a{{x}^{2}}+bx+c=0 \\
& x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
\end{align}$
Complete step-by-step answer:
$16{{\cos }^{6}}x-25{{\cos }^{4}}x+11{{\cos }^{2}}x-2=0$
Put
$\begin{align}
& {{\cos }^{2}}x=t \\
& 16\left[ {{t}^{3}} \right]-25\text{ }{{t}^{2}}+11\text{ }t-2=0......(1) \\
& \text{By substitution we find one factor of cubic equation}\text{.} \\
\end{align}$
Put
$t=1$ in equation (1)
$\begin{align}
& 16{{\left( 1 \right)}^{3}}-25{{\left( 1 \right)}^{2}}+11\left( 1 \right)-2 \\
& =16-25+11-2 \\
& =27-27=0 \\
\end{align}$
Therefore t = 1 is the solution of cubic equation $16\text{ }{{t}^{3}}-25\text{ }{{t}^{2}}+11\text{ }t-2$.
[By long division]
$\text{16 }{{t}^{3}}-25\text{ }{{t}^{2}}+11\text{ t}-2=\left( t-1 \right)\left( 16\text{ }{{t}^{2}}-9t+2 \right)$
Now we will solve the quadratic equation
$\left( 16\text{ }{{t}^{2}}-9t+2 \right)$
\[\begin{align}
&\Rightarrow 16\text{ }{{t}^{2}}-9\text{ }t+2=0 \\
& \Rightarrow a=16\text{ } \\
&\Rightarrow b=-9 \\
& c=2 \\
\end{align}\]
\[\begin{align}
& \Rightarrow t=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
& \Rightarrow t =\dfrac{-\left( -9 \right)\pm \sqrt{{{\left( -9 \right)}^{2}}-4\times 16\times 2}}{2\times 16} \\
& \Rightarrow t =\dfrac{9\pm \sqrt{81-128}}{32} \\
&\Rightarrow t=\dfrac{9\pm \sqrt{-47}}{32}\text{ No, real roots because}\sqrt{-47}\text{ is not a real number} \\
& \text{Hence 16 }{{t}^{3}}-25\text{ }{{t}^{2}}+11\text{ }t-2=\left( t-1 \right)\left( 16\,{{t}^{2}}-9t+2 \right) \\
\end{align}\]
\[\text{Substitute }=t={{\cos }^{2}}~x\]
$\begin{align}
& \therefore \left( {{\cos }^{2}}~x-1 \right)\left( 16{{\cos }^{4}}~x-9{{\cos }^{2}}~x+2 \right)=0 \\
& \Rightarrow {{\cos }^{2}}~x-1=0\text{ or }16{{\cos }^{4}}~x-9{{\cos }^{2}}~x+2=0 \\
&\Rightarrow {{\cos }^{2}}~x=1 \\
& \Rightarrow {{\cos }^{2}}~x=\pm 1 \\
\end{align}$
Additional information:
We can solve quadratic problem by splitting the middle term if we are not able to solve the quadratic problem by splitting the middle term we can use $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ formula.
Note: For higher powers we have to substitute like in this power was 6. So we substitute ${{\cos }^{2}}~x=t$ so we get a cubic calculation then factorize.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?

