
Solve the following system of equation by matrix method:
4x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
Answer
512.8k+ views
Hint:We will use the formula, $X={{A}^{-1}}B$ to solve this question using the matrix method, where, $X=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right],{{A}^{-1}}=\dfrac{AdjA}{\left| A \right|}$ and $B=\left[ \begin{matrix}
16 \\
19 \\
25 \\
\end{matrix} \right]$. So, to find ${{A}^{-1}}$, we will first find the determinant of matrix A, that is $\left| A \right|$, then we will find the cofactors of matrix A, take its transpose, and that will be $AdjA$. Therefore, we will be able to get ${{A}^{-1}}=\dfrac{AdjA}{\left| A \right|}$ and then we will solve the question.
Complete step-by-step answer:
It is given in the question that, we have to solve the system of equations, 4x + 3y + z = 16, 2x + y + 3z = 19, x + 2y + 4z = 25 using the matrix method.
So, first we have to convert the given equations into the matrix form. So, we can write it as follows.
\[\left[ \begin{matrix}
5 & 3 & 1 \\
2 & 1 & 3 \\
1 & 2 & 4 \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
16 \\
19 \\
25 \\
\end{matrix} \right]\]
Here, \[A=\left[ \begin{matrix}
5 & 3 & 1 \\
2 & 1 & 3 \\
1 & 2 & 4 \\
\end{matrix} \right],X=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]\] and $B=\left[ \begin{matrix}
16 \\
19 \\
25 \\
\end{matrix} \right]$.
Now, we will find the determinant of matrix A, that is, $\left| A \right|$. So, we get,
$A=\left| \begin{matrix}
5 & 3 & 1 \\
2 & 1 & 3 \\
1 & 2 & 4 \\
\end{matrix} \right|$
= 5 (4 - 6) – 3 (8 - 3) + 1 (4 - 1)
= 5 (-2) – 3 (5) + (3)
= -10 – 15 + 3
= -22
Now, we will find the adjoint of matrix A, that is Adj A. So, let us assume ${{c}_{ij}}$ as the cofactors of the elements ${{a}_{ij}}$ in $A\left[ {{a}_{ij}} \right]$. So, we get,
\[\begin{align}
& {{c}_{11}}={{\left( -1 \right)}^{1+1}}\left| \begin{matrix}
1 & 3 \\
2 & 4 \\
\end{matrix} \right|=1\left( 4-6 \right)=-2 \\
& {{c}_{12}}={{\left( -1 \right)}^{1+2}}\left| \begin{matrix}
2 & 3 \\
1 & 4 \\
\end{matrix} \right|=\left( -1 \right)\left( 8-3 \right)=-5 \\
& {{c}_{13}}={{\left( -1 \right)}^{1+3}}\left| \begin{matrix}
2 & 1 \\
1 & 2 \\
\end{matrix} \right|=1\left( 4-1 \right)=3 \\
& {{c}_{21}}={{\left( -1 \right)}^{2+1}}\left| \begin{matrix}
3 & 1 \\
2 & 4 \\
\end{matrix} \right|=\left( -1 \right)\left( 12-2 \right)=-10 \\
& {{c}_{22}}={{\left( -1 \right)}^{2+2}}\left| \begin{matrix}
5 & 1 \\
1 & 4 \\
\end{matrix} \right|=1\left( 20-1 \right)=19 \\
& {{c}_{23}}={{\left( -1 \right)}^{2+3}}\left| \begin{matrix}
5 & 3 \\
1 & 2 \\
\end{matrix} \right|=\left( -1 \right)\left( 10-3 \right)=-7 \\
& {{c}_{31}}={{\left( -1 \right)}^{3+1}}\left| \begin{matrix}
3 & 1 \\
1 & 3 \\
\end{matrix} \right|=1\left( 9-1 \right)=8 \\
& {{c}_{32}}={{\left( -1 \right)}^{3+2}}\left| \begin{matrix}
5 & 1 \\
2 & 3 \\
\end{matrix} \right|=\left( -1 \right)\left( 15-2 \right)=-13 \\
& {{c}_{33}}={{\left( -1 \right)}^{3+3}}\left| \begin{matrix}
5 & 3 \\
2 & 1 \\
\end{matrix} \right|=1\left( 5-6 \right)=-1 \\
\end{align}\]
Therefore, we get the cofactor matrix as, $\left[ \begin{matrix}
-2 & -5 & 3 \\
-10 & 19 & -7 \\
8 & -13 & -1 \\
\end{matrix} \right]$
Now, on taking the transpose of the above matrix, we will get $AdjA$ as,
$\begin{align}
& AdjA={{\left[ \begin{matrix}
-2 & -5 & 3 \\
-10 & 19 & -7 \\
8 & -13 & -1 \\
\end{matrix} \right]}^{T}} \\
& AdjA=\left[ \begin{matrix}
-2 & -10 & 8 \\
-5 & 19 & -3 \\
3 & -7 & -1 \\
\end{matrix} \right] \\
\end{align}$
Now, we know that ${{A}^{-1}}=\dfrac{1}{\left| A \right|}AdjA$. So, we get,
${{A}^{-1}}=\dfrac{1}{-22}\left[ \begin{matrix}
-2 & -10 & 8 \\
-5 & 19 & -3 \\
3 & -7 & -1 \\
\end{matrix} \right]$
We know that $X={{A}^{-1}}B$. So, here we have,
$X=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right],{{A}^{-1}}=\dfrac{1}{-22}\left[ \begin{matrix}
-2 & -10 & 8 \\
-5 & 19 & -3 \\
3 & -7 & -1 \\
\end{matrix} \right]$ and $B=\left[ \begin{matrix}
16 \\
19 \\
25 \\
\end{matrix} \right]$.
Therefore, we can write,
$\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{-22}\left[ \begin{matrix}
-2 & -10 & 8 \\
-5 & 19 & -3 \\
3 & -7 & -1 \\
\end{matrix} \right]\left[ \begin{matrix}
16 \\
19 \\
25 \\
\end{matrix} \right]$
Now, we will perform the multiplication of the two matrices on the RHS. So, we can write,
\[\begin{align}
& \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{-22}\left[ \begin{matrix}
-32-190+200 \\
-80+361-325 \\
48-133-25 \\
\end{matrix} \right] \\
& \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{-22}\left[ \begin{matrix}
-22 \\
-44 \\
-110 \\
\end{matrix} \right] \\
\end{align}\]
Now, we will take $\dfrac{1}{-22}$ and multiply it with the terms inside the matrix, as it is a constant and we know that constants can be multiplied with the terms inside a matrix. So, we will get,
$\begin{align}
& \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
-22\times \dfrac{1}{-22} \\
-44\times \dfrac{1}{-22} \\
-110\times \dfrac{1}{-22} \\
\end{matrix} \right] \\
& \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
2 \\
5 \\
\end{matrix} \right] \\
\end{align}$
Therefore, we get the values of x = 1, y = 2 and z = 5.
Note: The most common mistake that the students make in this question is, by not taking the transpose of the matrix formed after finding the cofactors of matrix A. This will lead to getting the wrong answers. Also, while finding the determinant of matrix A, some students may make mistakes by changing the signs. And the students should also know how to carry out multiplication of matrices as there are chances of calculation mistakes also. In the last step we can also take -22 common from the matrix as shown below.
\[\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{-22}\left[ \begin{matrix}
-22 \\
-44 \\
-110 \\
\end{matrix} \right]\]
\[\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{-22}\times -22\left[ \begin{matrix}
1 \\
2 \\
5 \\
\end{matrix} \right]\]
\[\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
2 \\
5 \\
\end{matrix} \right]\]
Therefore, we get the values of x = 1, y = 2 and z = 5.
x \\
y \\
z \\
\end{matrix} \right],{{A}^{-1}}=\dfrac{AdjA}{\left| A \right|}$ and $B=\left[ \begin{matrix}
16 \\
19 \\
25 \\
\end{matrix} \right]$. So, to find ${{A}^{-1}}$, we will first find the determinant of matrix A, that is $\left| A \right|$, then we will find the cofactors of matrix A, take its transpose, and that will be $AdjA$. Therefore, we will be able to get ${{A}^{-1}}=\dfrac{AdjA}{\left| A \right|}$ and then we will solve the question.
Complete step-by-step answer:
It is given in the question that, we have to solve the system of equations, 4x + 3y + z = 16, 2x + y + 3z = 19, x + 2y + 4z = 25 using the matrix method.
So, first we have to convert the given equations into the matrix form. So, we can write it as follows.
\[\left[ \begin{matrix}
5 & 3 & 1 \\
2 & 1 & 3 \\
1 & 2 & 4 \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
16 \\
19 \\
25 \\
\end{matrix} \right]\]
Here, \[A=\left[ \begin{matrix}
5 & 3 & 1 \\
2 & 1 & 3 \\
1 & 2 & 4 \\
\end{matrix} \right],X=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]\] and $B=\left[ \begin{matrix}
16 \\
19 \\
25 \\
\end{matrix} \right]$.
Now, we will find the determinant of matrix A, that is, $\left| A \right|$. So, we get,
$A=\left| \begin{matrix}
5 & 3 & 1 \\
2 & 1 & 3 \\
1 & 2 & 4 \\
\end{matrix} \right|$
= 5 (4 - 6) – 3 (8 - 3) + 1 (4 - 1)
= 5 (-2) – 3 (5) + (3)
= -10 – 15 + 3
= -22
Now, we will find the adjoint of matrix A, that is Adj A. So, let us assume ${{c}_{ij}}$ as the cofactors of the elements ${{a}_{ij}}$ in $A\left[ {{a}_{ij}} \right]$. So, we get,
\[\begin{align}
& {{c}_{11}}={{\left( -1 \right)}^{1+1}}\left| \begin{matrix}
1 & 3 \\
2 & 4 \\
\end{matrix} \right|=1\left( 4-6 \right)=-2 \\
& {{c}_{12}}={{\left( -1 \right)}^{1+2}}\left| \begin{matrix}
2 & 3 \\
1 & 4 \\
\end{matrix} \right|=\left( -1 \right)\left( 8-3 \right)=-5 \\
& {{c}_{13}}={{\left( -1 \right)}^{1+3}}\left| \begin{matrix}
2 & 1 \\
1 & 2 \\
\end{matrix} \right|=1\left( 4-1 \right)=3 \\
& {{c}_{21}}={{\left( -1 \right)}^{2+1}}\left| \begin{matrix}
3 & 1 \\
2 & 4 \\
\end{matrix} \right|=\left( -1 \right)\left( 12-2 \right)=-10 \\
& {{c}_{22}}={{\left( -1 \right)}^{2+2}}\left| \begin{matrix}
5 & 1 \\
1 & 4 \\
\end{matrix} \right|=1\left( 20-1 \right)=19 \\
& {{c}_{23}}={{\left( -1 \right)}^{2+3}}\left| \begin{matrix}
5 & 3 \\
1 & 2 \\
\end{matrix} \right|=\left( -1 \right)\left( 10-3 \right)=-7 \\
& {{c}_{31}}={{\left( -1 \right)}^{3+1}}\left| \begin{matrix}
3 & 1 \\
1 & 3 \\
\end{matrix} \right|=1\left( 9-1 \right)=8 \\
& {{c}_{32}}={{\left( -1 \right)}^{3+2}}\left| \begin{matrix}
5 & 1 \\
2 & 3 \\
\end{matrix} \right|=\left( -1 \right)\left( 15-2 \right)=-13 \\
& {{c}_{33}}={{\left( -1 \right)}^{3+3}}\left| \begin{matrix}
5 & 3 \\
2 & 1 \\
\end{matrix} \right|=1\left( 5-6 \right)=-1 \\
\end{align}\]
Therefore, we get the cofactor matrix as, $\left[ \begin{matrix}
-2 & -5 & 3 \\
-10 & 19 & -7 \\
8 & -13 & -1 \\
\end{matrix} \right]$
Now, on taking the transpose of the above matrix, we will get $AdjA$ as,
$\begin{align}
& AdjA={{\left[ \begin{matrix}
-2 & -5 & 3 \\
-10 & 19 & -7 \\
8 & -13 & -1 \\
\end{matrix} \right]}^{T}} \\
& AdjA=\left[ \begin{matrix}
-2 & -10 & 8 \\
-5 & 19 & -3 \\
3 & -7 & -1 \\
\end{matrix} \right] \\
\end{align}$
Now, we know that ${{A}^{-1}}=\dfrac{1}{\left| A \right|}AdjA$. So, we get,
${{A}^{-1}}=\dfrac{1}{-22}\left[ \begin{matrix}
-2 & -10 & 8 \\
-5 & 19 & -3 \\
3 & -7 & -1 \\
\end{matrix} \right]$
We know that $X={{A}^{-1}}B$. So, here we have,
$X=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right],{{A}^{-1}}=\dfrac{1}{-22}\left[ \begin{matrix}
-2 & -10 & 8 \\
-5 & 19 & -3 \\
3 & -7 & -1 \\
\end{matrix} \right]$ and $B=\left[ \begin{matrix}
16 \\
19 \\
25 \\
\end{matrix} \right]$.
Therefore, we can write,
$\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{-22}\left[ \begin{matrix}
-2 & -10 & 8 \\
-5 & 19 & -3 \\
3 & -7 & -1 \\
\end{matrix} \right]\left[ \begin{matrix}
16 \\
19 \\
25 \\
\end{matrix} \right]$
Now, we will perform the multiplication of the two matrices on the RHS. So, we can write,
\[\begin{align}
& \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{-22}\left[ \begin{matrix}
-32-190+200 \\
-80+361-325 \\
48-133-25 \\
\end{matrix} \right] \\
& \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{-22}\left[ \begin{matrix}
-22 \\
-44 \\
-110 \\
\end{matrix} \right] \\
\end{align}\]
Now, we will take $\dfrac{1}{-22}$ and multiply it with the terms inside the matrix, as it is a constant and we know that constants can be multiplied with the terms inside a matrix. So, we will get,
$\begin{align}
& \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
-22\times \dfrac{1}{-22} \\
-44\times \dfrac{1}{-22} \\
-110\times \dfrac{1}{-22} \\
\end{matrix} \right] \\
& \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
2 \\
5 \\
\end{matrix} \right] \\
\end{align}$
Therefore, we get the values of x = 1, y = 2 and z = 5.
Note: The most common mistake that the students make in this question is, by not taking the transpose of the matrix formed after finding the cofactors of matrix A. This will lead to getting the wrong answers. Also, while finding the determinant of matrix A, some students may make mistakes by changing the signs. And the students should also know how to carry out multiplication of matrices as there are chances of calculation mistakes also. In the last step we can also take -22 common from the matrix as shown below.
\[\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{-22}\left[ \begin{matrix}
-22 \\
-44 \\
-110 \\
\end{matrix} \right]\]
\[\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{-22}\times -22\left[ \begin{matrix}
1 \\
2 \\
5 \\
\end{matrix} \right]\]
\[\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
2 \\
5 \\
\end{matrix} \right]\]
Therefore, we get the values of x = 1, y = 2 and z = 5.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

