
Solve the following:
$\left( {{x}^{2}}+{{y}^{2}} \right)dx+\left( 2xy \right)dy=0$
Answer
510.9k+ views
Hint: We will be using the concepts of differential equations to solve the problem. We will first test the given differential equation for homogeneity then we will use the method of solving homogeneous differential equation to solve the problem in which we make the substitution $y=\upsilon x$ to convert the differential equation in one variable v.
Complete step-by-step answer:
Now, we have been given that,
$\begin{align}
& \left( {{x}^{2}}+{{y}^{2}} \right)dx+\left( 2xy \right)dy=0 \\
& \dfrac{{{x}^{2}}+{{y}^{2}}}{-2xy}=\dfrac{dy}{dx} \\
\end{align}$
Now, we will check the given differential for homogeneity for that we put $F\left( x,y \right)=\dfrac{dy}{dx}$ and will find $F\left( \lambda x,\lambda y \right)$.
$F\left( x,y \right)=\dfrac{-\left( {{x}^{2}}+{{y}^{2}} \right)}{2xy}$
So, we have,
\[\begin{align}
& F\left( \lambda x,\lambda y \right)=\dfrac{-\left( {{\lambda }^{2}}\left( {{x}^{2}} \right)+{{\lambda }^{2}}\left( {{y}^{2}} \right) \right.}{2{{\lambda }^{2}}xy} \\
& =\dfrac{{{\lambda }^{2}}\left( -\left( {{x}^{2}}+{{y}^{2}} \right) \right.}{2{{\lambda }^{2}}xy} \\
& =\dfrac{-\left( {{x}^{2}}+{{y}^{2}} \right)}{2xy} \\
& ={{\lambda }^{0}}\dfrac{-\left( {{x}^{2}}+{{y}^{2}} \right)}{2xy} \\
& F\left( \lambda x,\lambda y \right)={{\lambda }^{0}}F\left( x,y \right) \\
\end{align}\]
Hence, F (x, y) is a homogeneous function of degree zero. So, $\dfrac{dy}{dx}$ is a homogeneous differential equation. Therefore, we will solve it by putting $y=\upsilon x$.
Now, we differentiate it with the respect to x.
$\dfrac{dy}{dx}=\upsilon +x\dfrac{dv}{dx}$
Now, we will substitute this in,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{-\left( {{x}^{2}}+{{y}^{2}} \right)}{2xy} \\
& \upsilon +x\dfrac{d\upsilon }{dx}=\dfrac{-\left( {{x}^{2}}+{{\upsilon }^{2}}{{x}^{2}} \right)}{2\upsilon {{x}^{2}}} \\
& x\dfrac{d\upsilon }{dx}+\upsilon =\dfrac{-\left( 1+{{\upsilon }^{2}} \right)}{2\upsilon } \\
& x\dfrac{d\upsilon }{dx}=\dfrac{-\left( 1+{{\upsilon }^{2}} \right)}{2\upsilon }-\upsilon \\
& x\dfrac{d\upsilon }{dx}=\dfrac{-\left( 1+{{\upsilon }^{2}} \right)-2{{\upsilon }^{2}}}{2\upsilon } \\
& x\dfrac{d\upsilon }{dx}=\dfrac{-1-{{\upsilon }^{2}}-2{{\upsilon }^{2}}}{2\upsilon } \\
& x\dfrac{d\upsilon }{dx}=\dfrac{-1-3{{\upsilon }^{2}}}{2\upsilon } \\
\end{align}$
Now, on separating variable we have,
$\dfrac{dx}{x}=\dfrac{-2\upsilon }{1+3{{\upsilon }^{2}}}d\upsilon $
On integrating both sides we have,
$\int{\dfrac{dx}{x}=\int{\dfrac{-2\upsilon }{1+3{{\upsilon }^{2}}}d\upsilon }}$
Now, we know that,
$\int{\dfrac{dx}{x}=\ln \left| x \right|}$
So, we have,
$\ln \left| x \right|=\int{\dfrac{-2\upsilon }{1+3{{\upsilon }^{2}}}d\upsilon }$
Now, we take $1+3{{\upsilon }^{2}}=z$. So,
$\begin{align}
& 6\upsilon d\upsilon =dz \\
& 2\upsilon d\upsilon =\dfrac{dz}{3} \\
\end{align}$
On substituting this we have,
$\begin{align}
& \ln \left| x \right|=\int{\dfrac{-dz}{3z}} \\
& =\dfrac{-1}{3}\int{\dfrac{dz}{z}} \\
& \ln \left| x \right|=\dfrac{-1}{3}\ln \left| z \right| \\
\end{align}$
Now, we substitute $z=1+3{{x}^{2}}\ and\ \upsilon =\dfrac{y}{x}$.
\[\begin{align}
& \ln \left| x \right|=\dfrac{-1}{3}\ln \left| 1+3{{\upsilon }^{2}} \right|+\ln c \\
& \ln \left| x \right|=\dfrac{-1}{3}\ln \left| 1+\dfrac{3{{y}^{2}}}{{{x}^{2}}} \right|+\ln c \\
& \ln \left| x \right|=\dfrac{-1}{3}\ln \left| 1+\dfrac{{{x}^{2}}+3{{y}^{2}}}{{{x}^{2}}} \right|+\ln c \\
& 3\ln \left| x \right|+\ln \left| \dfrac{{{x}^{2}}+3{{y}^{2}}}{{{x}^{2}}} \right|=3\ln c \\
& \ln \left| {{x}^{3}}\left( \dfrac{{{x}^{2}}+3{{y}^{2}}}{{{x}^{2}}} \right) \right|=3\ln c \\
\end{align}\]
Now, let the constant $3\ln c=\ln {{c}_{1}}$.
$\begin{align}
& \ln \left| {{x}^{3}}+3x{{y}^{2}} \right|=\ln {{c}_{1}} \\
& {{x}^{3}}+3x{{y}^{2}}={{c}_{1}} \\
\end{align}$
Note: To solve these types of questions one should first check the differential equation for homogeneity if the equation is homogeneous then solve it using the same method otherwise use other methods to solve the problem also it has to be noted that we used the substitution that $y=\upsilon x$ to convert the whole differential equation into one variable.In last step of solution, student should remember the identities of logarithm like,
$\log {{b}^{m}}=m\log b$ , $\log \dfrac{a}{b}=\log a-\log b$ to simplify further.
Complete step-by-step answer:
Now, we have been given that,
$\begin{align}
& \left( {{x}^{2}}+{{y}^{2}} \right)dx+\left( 2xy \right)dy=0 \\
& \dfrac{{{x}^{2}}+{{y}^{2}}}{-2xy}=\dfrac{dy}{dx} \\
\end{align}$
Now, we will check the given differential for homogeneity for that we put $F\left( x,y \right)=\dfrac{dy}{dx}$ and will find $F\left( \lambda x,\lambda y \right)$.
$F\left( x,y \right)=\dfrac{-\left( {{x}^{2}}+{{y}^{2}} \right)}{2xy}$
So, we have,
\[\begin{align}
& F\left( \lambda x,\lambda y \right)=\dfrac{-\left( {{\lambda }^{2}}\left( {{x}^{2}} \right)+{{\lambda }^{2}}\left( {{y}^{2}} \right) \right.}{2{{\lambda }^{2}}xy} \\
& =\dfrac{{{\lambda }^{2}}\left( -\left( {{x}^{2}}+{{y}^{2}} \right) \right.}{2{{\lambda }^{2}}xy} \\
& =\dfrac{-\left( {{x}^{2}}+{{y}^{2}} \right)}{2xy} \\
& ={{\lambda }^{0}}\dfrac{-\left( {{x}^{2}}+{{y}^{2}} \right)}{2xy} \\
& F\left( \lambda x,\lambda y \right)={{\lambda }^{0}}F\left( x,y \right) \\
\end{align}\]
Hence, F (x, y) is a homogeneous function of degree zero. So, $\dfrac{dy}{dx}$ is a homogeneous differential equation. Therefore, we will solve it by putting $y=\upsilon x$.
Now, we differentiate it with the respect to x.
$\dfrac{dy}{dx}=\upsilon +x\dfrac{dv}{dx}$
Now, we will substitute this in,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{-\left( {{x}^{2}}+{{y}^{2}} \right)}{2xy} \\
& \upsilon +x\dfrac{d\upsilon }{dx}=\dfrac{-\left( {{x}^{2}}+{{\upsilon }^{2}}{{x}^{2}} \right)}{2\upsilon {{x}^{2}}} \\
& x\dfrac{d\upsilon }{dx}+\upsilon =\dfrac{-\left( 1+{{\upsilon }^{2}} \right)}{2\upsilon } \\
& x\dfrac{d\upsilon }{dx}=\dfrac{-\left( 1+{{\upsilon }^{2}} \right)}{2\upsilon }-\upsilon \\
& x\dfrac{d\upsilon }{dx}=\dfrac{-\left( 1+{{\upsilon }^{2}} \right)-2{{\upsilon }^{2}}}{2\upsilon } \\
& x\dfrac{d\upsilon }{dx}=\dfrac{-1-{{\upsilon }^{2}}-2{{\upsilon }^{2}}}{2\upsilon } \\
& x\dfrac{d\upsilon }{dx}=\dfrac{-1-3{{\upsilon }^{2}}}{2\upsilon } \\
\end{align}$
Now, on separating variable we have,
$\dfrac{dx}{x}=\dfrac{-2\upsilon }{1+3{{\upsilon }^{2}}}d\upsilon $
On integrating both sides we have,
$\int{\dfrac{dx}{x}=\int{\dfrac{-2\upsilon }{1+3{{\upsilon }^{2}}}d\upsilon }}$
Now, we know that,
$\int{\dfrac{dx}{x}=\ln \left| x \right|}$
So, we have,
$\ln \left| x \right|=\int{\dfrac{-2\upsilon }{1+3{{\upsilon }^{2}}}d\upsilon }$
Now, we take $1+3{{\upsilon }^{2}}=z$. So,
$\begin{align}
& 6\upsilon d\upsilon =dz \\
& 2\upsilon d\upsilon =\dfrac{dz}{3} \\
\end{align}$
On substituting this we have,
$\begin{align}
& \ln \left| x \right|=\int{\dfrac{-dz}{3z}} \\
& =\dfrac{-1}{3}\int{\dfrac{dz}{z}} \\
& \ln \left| x \right|=\dfrac{-1}{3}\ln \left| z \right| \\
\end{align}$
Now, we substitute $z=1+3{{x}^{2}}\ and\ \upsilon =\dfrac{y}{x}$.
\[\begin{align}
& \ln \left| x \right|=\dfrac{-1}{3}\ln \left| 1+3{{\upsilon }^{2}} \right|+\ln c \\
& \ln \left| x \right|=\dfrac{-1}{3}\ln \left| 1+\dfrac{3{{y}^{2}}}{{{x}^{2}}} \right|+\ln c \\
& \ln \left| x \right|=\dfrac{-1}{3}\ln \left| 1+\dfrac{{{x}^{2}}+3{{y}^{2}}}{{{x}^{2}}} \right|+\ln c \\
& 3\ln \left| x \right|+\ln \left| \dfrac{{{x}^{2}}+3{{y}^{2}}}{{{x}^{2}}} \right|=3\ln c \\
& \ln \left| {{x}^{3}}\left( \dfrac{{{x}^{2}}+3{{y}^{2}}}{{{x}^{2}}} \right) \right|=3\ln c \\
\end{align}\]
Now, let the constant $3\ln c=\ln {{c}_{1}}$.
$\begin{align}
& \ln \left| {{x}^{3}}+3x{{y}^{2}} \right|=\ln {{c}_{1}} \\
& {{x}^{3}}+3x{{y}^{2}}={{c}_{1}} \\
\end{align}$
Note: To solve these types of questions one should first check the differential equation for homogeneity if the equation is homogeneous then solve it using the same method otherwise use other methods to solve the problem also it has to be noted that we used the substitution that $y=\upsilon x$ to convert the whole differential equation into one variable.In last step of solution, student should remember the identities of logarithm like,
$\log {{b}^{m}}=m\log b$ , $\log \dfrac{a}{b}=\log a-\log b$ to simplify further.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What I want should not be confused with total inactivity class 12 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
