
Solve the following:
$\left( {{x}^{2}}+{{y}^{2}} \right)dx+\left( 2xy \right)dy=0$
Answer
594.6k+ views
Hint: We will be using the concepts of differential equations to solve the problem. We will first test the given differential equation for homogeneity then we will use the method of solving homogeneous differential equation to solve the problem in which we make the substitution $y=\upsilon x$ to convert the differential equation in one variable v.
Complete step-by-step answer:
Now, we have been given that,
$\begin{align}
& \left( {{x}^{2}}+{{y}^{2}} \right)dx+\left( 2xy \right)dy=0 \\
& \dfrac{{{x}^{2}}+{{y}^{2}}}{-2xy}=\dfrac{dy}{dx} \\
\end{align}$
Now, we will check the given differential for homogeneity for that we put $F\left( x,y \right)=\dfrac{dy}{dx}$ and will find $F\left( \lambda x,\lambda y \right)$.
$F\left( x,y \right)=\dfrac{-\left( {{x}^{2}}+{{y}^{2}} \right)}{2xy}$
So, we have,
\[\begin{align}
& F\left( \lambda x,\lambda y \right)=\dfrac{-\left( {{\lambda }^{2}}\left( {{x}^{2}} \right)+{{\lambda }^{2}}\left( {{y}^{2}} \right) \right.}{2{{\lambda }^{2}}xy} \\
& =\dfrac{{{\lambda }^{2}}\left( -\left( {{x}^{2}}+{{y}^{2}} \right) \right.}{2{{\lambda }^{2}}xy} \\
& =\dfrac{-\left( {{x}^{2}}+{{y}^{2}} \right)}{2xy} \\
& ={{\lambda }^{0}}\dfrac{-\left( {{x}^{2}}+{{y}^{2}} \right)}{2xy} \\
& F\left( \lambda x,\lambda y \right)={{\lambda }^{0}}F\left( x,y \right) \\
\end{align}\]
Hence, F (x, y) is a homogeneous function of degree zero. So, $\dfrac{dy}{dx}$ is a homogeneous differential equation. Therefore, we will solve it by putting $y=\upsilon x$.
Now, we differentiate it with the respect to x.
$\dfrac{dy}{dx}=\upsilon +x\dfrac{dv}{dx}$
Now, we will substitute this in,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{-\left( {{x}^{2}}+{{y}^{2}} \right)}{2xy} \\
& \upsilon +x\dfrac{d\upsilon }{dx}=\dfrac{-\left( {{x}^{2}}+{{\upsilon }^{2}}{{x}^{2}} \right)}{2\upsilon {{x}^{2}}} \\
& x\dfrac{d\upsilon }{dx}+\upsilon =\dfrac{-\left( 1+{{\upsilon }^{2}} \right)}{2\upsilon } \\
& x\dfrac{d\upsilon }{dx}=\dfrac{-\left( 1+{{\upsilon }^{2}} \right)}{2\upsilon }-\upsilon \\
& x\dfrac{d\upsilon }{dx}=\dfrac{-\left( 1+{{\upsilon }^{2}} \right)-2{{\upsilon }^{2}}}{2\upsilon } \\
& x\dfrac{d\upsilon }{dx}=\dfrac{-1-{{\upsilon }^{2}}-2{{\upsilon }^{2}}}{2\upsilon } \\
& x\dfrac{d\upsilon }{dx}=\dfrac{-1-3{{\upsilon }^{2}}}{2\upsilon } \\
\end{align}$
Now, on separating variable we have,
$\dfrac{dx}{x}=\dfrac{-2\upsilon }{1+3{{\upsilon }^{2}}}d\upsilon $
On integrating both sides we have,
$\int{\dfrac{dx}{x}=\int{\dfrac{-2\upsilon }{1+3{{\upsilon }^{2}}}d\upsilon }}$
Now, we know that,
$\int{\dfrac{dx}{x}=\ln \left| x \right|}$
So, we have,
$\ln \left| x \right|=\int{\dfrac{-2\upsilon }{1+3{{\upsilon }^{2}}}d\upsilon }$
Now, we take $1+3{{\upsilon }^{2}}=z$. So,
$\begin{align}
& 6\upsilon d\upsilon =dz \\
& 2\upsilon d\upsilon =\dfrac{dz}{3} \\
\end{align}$
On substituting this we have,
$\begin{align}
& \ln \left| x \right|=\int{\dfrac{-dz}{3z}} \\
& =\dfrac{-1}{3}\int{\dfrac{dz}{z}} \\
& \ln \left| x \right|=\dfrac{-1}{3}\ln \left| z \right| \\
\end{align}$
Now, we substitute $z=1+3{{x}^{2}}\ and\ \upsilon =\dfrac{y}{x}$.
\[\begin{align}
& \ln \left| x \right|=\dfrac{-1}{3}\ln \left| 1+3{{\upsilon }^{2}} \right|+\ln c \\
& \ln \left| x \right|=\dfrac{-1}{3}\ln \left| 1+\dfrac{3{{y}^{2}}}{{{x}^{2}}} \right|+\ln c \\
& \ln \left| x \right|=\dfrac{-1}{3}\ln \left| 1+\dfrac{{{x}^{2}}+3{{y}^{2}}}{{{x}^{2}}} \right|+\ln c \\
& 3\ln \left| x \right|+\ln \left| \dfrac{{{x}^{2}}+3{{y}^{2}}}{{{x}^{2}}} \right|=3\ln c \\
& \ln \left| {{x}^{3}}\left( \dfrac{{{x}^{2}}+3{{y}^{2}}}{{{x}^{2}}} \right) \right|=3\ln c \\
\end{align}\]
Now, let the constant $3\ln c=\ln {{c}_{1}}$.
$\begin{align}
& \ln \left| {{x}^{3}}+3x{{y}^{2}} \right|=\ln {{c}_{1}} \\
& {{x}^{3}}+3x{{y}^{2}}={{c}_{1}} \\
\end{align}$
Note: To solve these types of questions one should first check the differential equation for homogeneity if the equation is homogeneous then solve it using the same method otherwise use other methods to solve the problem also it has to be noted that we used the substitution that $y=\upsilon x$ to convert the whole differential equation into one variable.In last step of solution, student should remember the identities of logarithm like,
$\log {{b}^{m}}=m\log b$ , $\log \dfrac{a}{b}=\log a-\log b$ to simplify further.
Complete step-by-step answer:
Now, we have been given that,
$\begin{align}
& \left( {{x}^{2}}+{{y}^{2}} \right)dx+\left( 2xy \right)dy=0 \\
& \dfrac{{{x}^{2}}+{{y}^{2}}}{-2xy}=\dfrac{dy}{dx} \\
\end{align}$
Now, we will check the given differential for homogeneity for that we put $F\left( x,y \right)=\dfrac{dy}{dx}$ and will find $F\left( \lambda x,\lambda y \right)$.
$F\left( x,y \right)=\dfrac{-\left( {{x}^{2}}+{{y}^{2}} \right)}{2xy}$
So, we have,
\[\begin{align}
& F\left( \lambda x,\lambda y \right)=\dfrac{-\left( {{\lambda }^{2}}\left( {{x}^{2}} \right)+{{\lambda }^{2}}\left( {{y}^{2}} \right) \right.}{2{{\lambda }^{2}}xy} \\
& =\dfrac{{{\lambda }^{2}}\left( -\left( {{x}^{2}}+{{y}^{2}} \right) \right.}{2{{\lambda }^{2}}xy} \\
& =\dfrac{-\left( {{x}^{2}}+{{y}^{2}} \right)}{2xy} \\
& ={{\lambda }^{0}}\dfrac{-\left( {{x}^{2}}+{{y}^{2}} \right)}{2xy} \\
& F\left( \lambda x,\lambda y \right)={{\lambda }^{0}}F\left( x,y \right) \\
\end{align}\]
Hence, F (x, y) is a homogeneous function of degree zero. So, $\dfrac{dy}{dx}$ is a homogeneous differential equation. Therefore, we will solve it by putting $y=\upsilon x$.
Now, we differentiate it with the respect to x.
$\dfrac{dy}{dx}=\upsilon +x\dfrac{dv}{dx}$
Now, we will substitute this in,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{-\left( {{x}^{2}}+{{y}^{2}} \right)}{2xy} \\
& \upsilon +x\dfrac{d\upsilon }{dx}=\dfrac{-\left( {{x}^{2}}+{{\upsilon }^{2}}{{x}^{2}} \right)}{2\upsilon {{x}^{2}}} \\
& x\dfrac{d\upsilon }{dx}+\upsilon =\dfrac{-\left( 1+{{\upsilon }^{2}} \right)}{2\upsilon } \\
& x\dfrac{d\upsilon }{dx}=\dfrac{-\left( 1+{{\upsilon }^{2}} \right)}{2\upsilon }-\upsilon \\
& x\dfrac{d\upsilon }{dx}=\dfrac{-\left( 1+{{\upsilon }^{2}} \right)-2{{\upsilon }^{2}}}{2\upsilon } \\
& x\dfrac{d\upsilon }{dx}=\dfrac{-1-{{\upsilon }^{2}}-2{{\upsilon }^{2}}}{2\upsilon } \\
& x\dfrac{d\upsilon }{dx}=\dfrac{-1-3{{\upsilon }^{2}}}{2\upsilon } \\
\end{align}$
Now, on separating variable we have,
$\dfrac{dx}{x}=\dfrac{-2\upsilon }{1+3{{\upsilon }^{2}}}d\upsilon $
On integrating both sides we have,
$\int{\dfrac{dx}{x}=\int{\dfrac{-2\upsilon }{1+3{{\upsilon }^{2}}}d\upsilon }}$
Now, we know that,
$\int{\dfrac{dx}{x}=\ln \left| x \right|}$
So, we have,
$\ln \left| x \right|=\int{\dfrac{-2\upsilon }{1+3{{\upsilon }^{2}}}d\upsilon }$
Now, we take $1+3{{\upsilon }^{2}}=z$. So,
$\begin{align}
& 6\upsilon d\upsilon =dz \\
& 2\upsilon d\upsilon =\dfrac{dz}{3} \\
\end{align}$
On substituting this we have,
$\begin{align}
& \ln \left| x \right|=\int{\dfrac{-dz}{3z}} \\
& =\dfrac{-1}{3}\int{\dfrac{dz}{z}} \\
& \ln \left| x \right|=\dfrac{-1}{3}\ln \left| z \right| \\
\end{align}$
Now, we substitute $z=1+3{{x}^{2}}\ and\ \upsilon =\dfrac{y}{x}$.
\[\begin{align}
& \ln \left| x \right|=\dfrac{-1}{3}\ln \left| 1+3{{\upsilon }^{2}} \right|+\ln c \\
& \ln \left| x \right|=\dfrac{-1}{3}\ln \left| 1+\dfrac{3{{y}^{2}}}{{{x}^{2}}} \right|+\ln c \\
& \ln \left| x \right|=\dfrac{-1}{3}\ln \left| 1+\dfrac{{{x}^{2}}+3{{y}^{2}}}{{{x}^{2}}} \right|+\ln c \\
& 3\ln \left| x \right|+\ln \left| \dfrac{{{x}^{2}}+3{{y}^{2}}}{{{x}^{2}}} \right|=3\ln c \\
& \ln \left| {{x}^{3}}\left( \dfrac{{{x}^{2}}+3{{y}^{2}}}{{{x}^{2}}} \right) \right|=3\ln c \\
\end{align}\]
Now, let the constant $3\ln c=\ln {{c}_{1}}$.
$\begin{align}
& \ln \left| {{x}^{3}}+3x{{y}^{2}} \right|=\ln {{c}_{1}} \\
& {{x}^{3}}+3x{{y}^{2}}={{c}_{1}} \\
\end{align}$
Note: To solve these types of questions one should first check the differential equation for homogeneity if the equation is homogeneous then solve it using the same method otherwise use other methods to solve the problem also it has to be noted that we used the substitution that $y=\upsilon x$ to convert the whole differential equation into one variable.In last step of solution, student should remember the identities of logarithm like,
$\log {{b}^{m}}=m\log b$ , $\log \dfrac{a}{b}=\log a-\log b$ to simplify further.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

