
Solve the following integral-
\[\int\limits_0^\infty {\mathop x\nolimits^n } \mathop e\nolimits^{ - x} dx\] (n is positive integer) is equal to
A) n!
B) (n-1)!
C) (n-2)!
D) (n+1)!
Answer
579.9k+ views
Hint: The integral of type \[\int\limits_0^\infty {\mathop x\nolimits^{n - 1} } \mathop e\nolimits^{ - x} dx\] is solved by using gamma function i.e.
\[\int\limits_0^\infty {\mathop x\nolimits^{n - 1} } \mathop e\nolimits^{ - x} dx = \left| \!{\overline {\,
n \,}} \right. \]
Here, are some standard result for gamma function $\left| \!{\overline {\,
n \,}} \right. $:
$
\left| \!{\overline {\,
{n + 1} \,}} \right. = n! \\
\left| \!{\overline {\,
{\dfrac{1}{2}} \,}} \right. = \sqrt \pi \\
\left| \!{\overline {\,
1 \,}} \right. = 1 \\
$
Complete step-by-step answer:
Step 1: Given integral \[I = \int\limits_0^\infty {\mathop x\nolimits^n } \mathop e\nolimits^{ - x} dx\].
In order to use gamma function: \[\int\limits_0^\infty {\mathop x\nolimits^{n - 1} } \mathop e\nolimits^{ - x} dx = \left| \!{\overline {\,
n \,}} \right. \]
Step 2: Reduce the given integral accordingly to use gamma function.
Here, the power of the variable, x is in the form $(n - 1)$.
Therefore, reduce the power of variable, x in given integral in the form $(n - 1)$.
The power of variable, x in given integral = n
Adding +1 and -1 to the power won’t change the function.
$ \Rightarrow n - 1 + 1$
$ \Rightarrow \left[ {(n + 1) - 1} \right]$
Thus, the power of variable, x in given integral can be written as $\left[ {\left( {n + 1} \right) - 1} \right]$
Step 3: Solve integral using gamma function
Hence, \[I = \int\limits_0^\infty {\mathop x\nolimits^{\left[ {\left( {n + 1} \right) - 1} \right]} } \mathop e\nolimits^{ - x} dx\].
By gamma function
\[I = \int\limits_0^\infty {\mathop x\nolimits^{\left[ {\left( {n + 1} \right) - 1} \right]} } \mathop e\nolimits^{ - x} dx = \left| \!{\overline {\,
{n + 1} \,}} \right. \]
$ \Rightarrow \left| \!{\overline {\,
{n + 1} \,}} \right. = n!$
Final answer: The integral \[\int\limits_0^\infty {\mathop x\nolimits^n } \mathop e\nolimits^{ - x} dx = n!\].
Thus the correct option is (A).
Note:To use gamma function, the limits of the integral must be from $0 \to \infty $.
The question of type \[\int\limits_0^\infty {\mathop e\nolimits^{ - \mathop x\nolimits^2 } } dx\]can also be solved by the help of gamma function.
\[I = \int\limits_0^\infty {\mathop e\nolimits^{ - \mathop x\nolimits^2 } } dx\]
Take \[\mathop x\nolimits^2 = t\]
$\therefore x = \sqrt t $
On differentiating both sides
$
2xdx = dt \\
\Rightarrow dx = \dfrac{{dt}}{{2x}} \\
$
$
\Rightarrow dx = \dfrac{{dt}}{{2\sqrt t }} \\
\Rightarrow dx = \dfrac{1}{2}\mathop t\nolimits^{ - \dfrac{1}{2}} {\text{ }}dt \\
$
Change of limits:
When, $x \to 0 \Rightarrow t \to 0$
$x \to \infty \Rightarrow t \to \infty $
On substitution integral becomes
$I = \dfrac{1}{2}\int\limits_0^\infty {\mathop t\nolimits^{ - \dfrac{1}{2}} } \mathop e\nolimits^{ - t} {\text{ }}dt$
In order to use gamma function: \[\int\limits_0^\infty {\mathop x\nolimits^{n - 1} } \mathop e\nolimits^{ - x} dx = \left| \!{\overline {\,
n \,}} \right. \]
Here, the power of the variable, x is in the form $(n - 1)$.
Therefore, reduce the power of the variable, t in above integral in the form $(n - 1)$.
The power of variable, t in above integral = $ - \dfrac{1}{2}$
Adding +1 and -1 to the power won’t change the function.
$ \Rightarrow - \dfrac{1}{2} - 1 + 1$
$ \Rightarrow \left( {\dfrac{1}{2} - 1} \right)$
Thus, the power of variable, t in above integral can be written as $\left( {\dfrac{1}{2} - 1} \right)$
Hence, $I = \dfrac{1}{2}\int\limits_0^\infty {\mathop t\nolimits^{\left( {\dfrac{1}{2} - 1} \right)} } \mathop e\nolimits^{ - t} {\text{ }}dt$
By gamma function
$ \Rightarrow \dfrac{1}{2}\left| \!{\overline {\,
{\dfrac{1}{2}} \,}} \right. $
We know, $\left| \!{\overline {\,
{\dfrac{1}{2}} \,}} \right. = \sqrt \pi $
$\because I = \dfrac{{\sqrt \pi }}{2}$
\[\int\limits_0^\infty {\mathop x\nolimits^{n - 1} } \mathop e\nolimits^{ - x} dx = \left| \!{\overline {\,
n \,}} \right. \]
Here, are some standard result for gamma function $\left| \!{\overline {\,
n \,}} \right. $:
$
\left| \!{\overline {\,
{n + 1} \,}} \right. = n! \\
\left| \!{\overline {\,
{\dfrac{1}{2}} \,}} \right. = \sqrt \pi \\
\left| \!{\overline {\,
1 \,}} \right. = 1 \\
$
Complete step-by-step answer:
Step 1: Given integral \[I = \int\limits_0^\infty {\mathop x\nolimits^n } \mathop e\nolimits^{ - x} dx\].
In order to use gamma function: \[\int\limits_0^\infty {\mathop x\nolimits^{n - 1} } \mathop e\nolimits^{ - x} dx = \left| \!{\overline {\,
n \,}} \right. \]
Step 2: Reduce the given integral accordingly to use gamma function.
Here, the power of the variable, x is in the form $(n - 1)$.
Therefore, reduce the power of variable, x in given integral in the form $(n - 1)$.
The power of variable, x in given integral = n
Adding +1 and -1 to the power won’t change the function.
$ \Rightarrow n - 1 + 1$
$ \Rightarrow \left[ {(n + 1) - 1} \right]$
Thus, the power of variable, x in given integral can be written as $\left[ {\left( {n + 1} \right) - 1} \right]$
Step 3: Solve integral using gamma function
Hence, \[I = \int\limits_0^\infty {\mathop x\nolimits^{\left[ {\left( {n + 1} \right) - 1} \right]} } \mathop e\nolimits^{ - x} dx\].
By gamma function
\[I = \int\limits_0^\infty {\mathop x\nolimits^{\left[ {\left( {n + 1} \right) - 1} \right]} } \mathop e\nolimits^{ - x} dx = \left| \!{\overline {\,
{n + 1} \,}} \right. \]
$ \Rightarrow \left| \!{\overline {\,
{n + 1} \,}} \right. = n!$
Final answer: The integral \[\int\limits_0^\infty {\mathop x\nolimits^n } \mathop e\nolimits^{ - x} dx = n!\].
Thus the correct option is (A).
Note:To use gamma function, the limits of the integral must be from $0 \to \infty $.
The question of type \[\int\limits_0^\infty {\mathop e\nolimits^{ - \mathop x\nolimits^2 } } dx\]can also be solved by the help of gamma function.
\[I = \int\limits_0^\infty {\mathop e\nolimits^{ - \mathop x\nolimits^2 } } dx\]
Take \[\mathop x\nolimits^2 = t\]
$\therefore x = \sqrt t $
On differentiating both sides
$
2xdx = dt \\
\Rightarrow dx = \dfrac{{dt}}{{2x}} \\
$
$
\Rightarrow dx = \dfrac{{dt}}{{2\sqrt t }} \\
\Rightarrow dx = \dfrac{1}{2}\mathop t\nolimits^{ - \dfrac{1}{2}} {\text{ }}dt \\
$
Change of limits:
When, $x \to 0 \Rightarrow t \to 0$
$x \to \infty \Rightarrow t \to \infty $
On substitution integral becomes
$I = \dfrac{1}{2}\int\limits_0^\infty {\mathop t\nolimits^{ - \dfrac{1}{2}} } \mathop e\nolimits^{ - t} {\text{ }}dt$
In order to use gamma function: \[\int\limits_0^\infty {\mathop x\nolimits^{n - 1} } \mathop e\nolimits^{ - x} dx = \left| \!{\overline {\,
n \,}} \right. \]
Here, the power of the variable, x is in the form $(n - 1)$.
Therefore, reduce the power of the variable, t in above integral in the form $(n - 1)$.
The power of variable, t in above integral = $ - \dfrac{1}{2}$
Adding +1 and -1 to the power won’t change the function.
$ \Rightarrow - \dfrac{1}{2} - 1 + 1$
$ \Rightarrow \left( {\dfrac{1}{2} - 1} \right)$
Thus, the power of variable, t in above integral can be written as $\left( {\dfrac{1}{2} - 1} \right)$
Hence, $I = \dfrac{1}{2}\int\limits_0^\infty {\mathop t\nolimits^{\left( {\dfrac{1}{2} - 1} \right)} } \mathop e\nolimits^{ - t} {\text{ }}dt$
By gamma function
$ \Rightarrow \dfrac{1}{2}\left| \!{\overline {\,
{\dfrac{1}{2}} \,}} \right. $
We know, $\left| \!{\overline {\,
{\dfrac{1}{2}} \,}} \right. = \sqrt \pi $
$\because I = \dfrac{{\sqrt \pi }}{2}$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

