
Solve the following integral-
\[\int\limits_0^\infty {\mathop x\nolimits^n } \mathop e\nolimits^{ - x} dx\] (n is positive integer) is equal to
A) n!
B) (n-1)!
C) (n-2)!
D) (n+1)!
Answer
593.7k+ views
Hint: The integral of type \[\int\limits_0^\infty {\mathop x\nolimits^{n - 1} } \mathop e\nolimits^{ - x} dx\] is solved by using gamma function i.e.
\[\int\limits_0^\infty {\mathop x\nolimits^{n - 1} } \mathop e\nolimits^{ - x} dx = \left| \!{\overline {\,
n \,}} \right. \]
Here, are some standard result for gamma function $\left| \!{\overline {\,
n \,}} \right. $:
$
\left| \!{\overline {\,
{n + 1} \,}} \right. = n! \\
\left| \!{\overline {\,
{\dfrac{1}{2}} \,}} \right. = \sqrt \pi \\
\left| \!{\overline {\,
1 \,}} \right. = 1 \\
$
Complete step-by-step answer:
Step 1: Given integral \[I = \int\limits_0^\infty {\mathop x\nolimits^n } \mathop e\nolimits^{ - x} dx\].
In order to use gamma function: \[\int\limits_0^\infty {\mathop x\nolimits^{n - 1} } \mathop e\nolimits^{ - x} dx = \left| \!{\overline {\,
n \,}} \right. \]
Step 2: Reduce the given integral accordingly to use gamma function.
Here, the power of the variable, x is in the form $(n - 1)$.
Therefore, reduce the power of variable, x in given integral in the form $(n - 1)$.
The power of variable, x in given integral = n
Adding +1 and -1 to the power won’t change the function.
$ \Rightarrow n - 1 + 1$
$ \Rightarrow \left[ {(n + 1) - 1} \right]$
Thus, the power of variable, x in given integral can be written as $\left[ {\left( {n + 1} \right) - 1} \right]$
Step 3: Solve integral using gamma function
Hence, \[I = \int\limits_0^\infty {\mathop x\nolimits^{\left[ {\left( {n + 1} \right) - 1} \right]} } \mathop e\nolimits^{ - x} dx\].
By gamma function
\[I = \int\limits_0^\infty {\mathop x\nolimits^{\left[ {\left( {n + 1} \right) - 1} \right]} } \mathop e\nolimits^{ - x} dx = \left| \!{\overline {\,
{n + 1} \,}} \right. \]
$ \Rightarrow \left| \!{\overline {\,
{n + 1} \,}} \right. = n!$
Final answer: The integral \[\int\limits_0^\infty {\mathop x\nolimits^n } \mathop e\nolimits^{ - x} dx = n!\].
Thus the correct option is (A).
Note:To use gamma function, the limits of the integral must be from $0 \to \infty $.
The question of type \[\int\limits_0^\infty {\mathop e\nolimits^{ - \mathop x\nolimits^2 } } dx\]can also be solved by the help of gamma function.
\[I = \int\limits_0^\infty {\mathop e\nolimits^{ - \mathop x\nolimits^2 } } dx\]
Take \[\mathop x\nolimits^2 = t\]
$\therefore x = \sqrt t $
On differentiating both sides
$
2xdx = dt \\
\Rightarrow dx = \dfrac{{dt}}{{2x}} \\
$
$
\Rightarrow dx = \dfrac{{dt}}{{2\sqrt t }} \\
\Rightarrow dx = \dfrac{1}{2}\mathop t\nolimits^{ - \dfrac{1}{2}} {\text{ }}dt \\
$
Change of limits:
When, $x \to 0 \Rightarrow t \to 0$
$x \to \infty \Rightarrow t \to \infty $
On substitution integral becomes
$I = \dfrac{1}{2}\int\limits_0^\infty {\mathop t\nolimits^{ - \dfrac{1}{2}} } \mathop e\nolimits^{ - t} {\text{ }}dt$
In order to use gamma function: \[\int\limits_0^\infty {\mathop x\nolimits^{n - 1} } \mathop e\nolimits^{ - x} dx = \left| \!{\overline {\,
n \,}} \right. \]
Here, the power of the variable, x is in the form $(n - 1)$.
Therefore, reduce the power of the variable, t in above integral in the form $(n - 1)$.
The power of variable, t in above integral = $ - \dfrac{1}{2}$
Adding +1 and -1 to the power won’t change the function.
$ \Rightarrow - \dfrac{1}{2} - 1 + 1$
$ \Rightarrow \left( {\dfrac{1}{2} - 1} \right)$
Thus, the power of variable, t in above integral can be written as $\left( {\dfrac{1}{2} - 1} \right)$
Hence, $I = \dfrac{1}{2}\int\limits_0^\infty {\mathop t\nolimits^{\left( {\dfrac{1}{2} - 1} \right)} } \mathop e\nolimits^{ - t} {\text{ }}dt$
By gamma function
$ \Rightarrow \dfrac{1}{2}\left| \!{\overline {\,
{\dfrac{1}{2}} \,}} \right. $
We know, $\left| \!{\overline {\,
{\dfrac{1}{2}} \,}} \right. = \sqrt \pi $
$\because I = \dfrac{{\sqrt \pi }}{2}$
\[\int\limits_0^\infty {\mathop x\nolimits^{n - 1} } \mathop e\nolimits^{ - x} dx = \left| \!{\overline {\,
n \,}} \right. \]
Here, are some standard result for gamma function $\left| \!{\overline {\,
n \,}} \right. $:
$
\left| \!{\overline {\,
{n + 1} \,}} \right. = n! \\
\left| \!{\overline {\,
{\dfrac{1}{2}} \,}} \right. = \sqrt \pi \\
\left| \!{\overline {\,
1 \,}} \right. = 1 \\
$
Complete step-by-step answer:
Step 1: Given integral \[I = \int\limits_0^\infty {\mathop x\nolimits^n } \mathop e\nolimits^{ - x} dx\].
In order to use gamma function: \[\int\limits_0^\infty {\mathop x\nolimits^{n - 1} } \mathop e\nolimits^{ - x} dx = \left| \!{\overline {\,
n \,}} \right. \]
Step 2: Reduce the given integral accordingly to use gamma function.
Here, the power of the variable, x is in the form $(n - 1)$.
Therefore, reduce the power of variable, x in given integral in the form $(n - 1)$.
The power of variable, x in given integral = n
Adding +1 and -1 to the power won’t change the function.
$ \Rightarrow n - 1 + 1$
$ \Rightarrow \left[ {(n + 1) - 1} \right]$
Thus, the power of variable, x in given integral can be written as $\left[ {\left( {n + 1} \right) - 1} \right]$
Step 3: Solve integral using gamma function
Hence, \[I = \int\limits_0^\infty {\mathop x\nolimits^{\left[ {\left( {n + 1} \right) - 1} \right]} } \mathop e\nolimits^{ - x} dx\].
By gamma function
\[I = \int\limits_0^\infty {\mathop x\nolimits^{\left[ {\left( {n + 1} \right) - 1} \right]} } \mathop e\nolimits^{ - x} dx = \left| \!{\overline {\,
{n + 1} \,}} \right. \]
$ \Rightarrow \left| \!{\overline {\,
{n + 1} \,}} \right. = n!$
Final answer: The integral \[\int\limits_0^\infty {\mathop x\nolimits^n } \mathop e\nolimits^{ - x} dx = n!\].
Thus the correct option is (A).
Note:To use gamma function, the limits of the integral must be from $0 \to \infty $.
The question of type \[\int\limits_0^\infty {\mathop e\nolimits^{ - \mathop x\nolimits^2 } } dx\]can also be solved by the help of gamma function.
\[I = \int\limits_0^\infty {\mathop e\nolimits^{ - \mathop x\nolimits^2 } } dx\]
Take \[\mathop x\nolimits^2 = t\]
$\therefore x = \sqrt t $
On differentiating both sides
$
2xdx = dt \\
\Rightarrow dx = \dfrac{{dt}}{{2x}} \\
$
$
\Rightarrow dx = \dfrac{{dt}}{{2\sqrt t }} \\
\Rightarrow dx = \dfrac{1}{2}\mathop t\nolimits^{ - \dfrac{1}{2}} {\text{ }}dt \\
$
Change of limits:
When, $x \to 0 \Rightarrow t \to 0$
$x \to \infty \Rightarrow t \to \infty $
On substitution integral becomes
$I = \dfrac{1}{2}\int\limits_0^\infty {\mathop t\nolimits^{ - \dfrac{1}{2}} } \mathop e\nolimits^{ - t} {\text{ }}dt$
In order to use gamma function: \[\int\limits_0^\infty {\mathop x\nolimits^{n - 1} } \mathop e\nolimits^{ - x} dx = \left| \!{\overline {\,
n \,}} \right. \]
Here, the power of the variable, x is in the form $(n - 1)$.
Therefore, reduce the power of the variable, t in above integral in the form $(n - 1)$.
The power of variable, t in above integral = $ - \dfrac{1}{2}$
Adding +1 and -1 to the power won’t change the function.
$ \Rightarrow - \dfrac{1}{2} - 1 + 1$
$ \Rightarrow \left( {\dfrac{1}{2} - 1} \right)$
Thus, the power of variable, t in above integral can be written as $\left( {\dfrac{1}{2} - 1} \right)$
Hence, $I = \dfrac{1}{2}\int\limits_0^\infty {\mathop t\nolimits^{\left( {\dfrac{1}{2} - 1} \right)} } \mathop e\nolimits^{ - t} {\text{ }}dt$
By gamma function
$ \Rightarrow \dfrac{1}{2}\left| \!{\overline {\,
{\dfrac{1}{2}} \,}} \right. $
We know, $\left| \!{\overline {\,
{\dfrac{1}{2}} \,}} \right. = \sqrt \pi $
$\because I = \dfrac{{\sqrt \pi }}{2}$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

