
Solve the following integral \[\int {{{\sin }^{ - 1}}\left( {2x} \right)dx} \].
Answer
491.1k+ views
Hint: n this question we have to solve the given integral. In order to solve this question, first of all we will assume \[{\sin ^{ - 1}}2x = t\] . After that we will differentiate it and transfer the given integral in terms of \[t\] . After that we will use the concept of integration by parts i.e., \[\int {\left( {u \cdot v} \right)dx = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } } {\text{ }}dx\] where \[u\] is the first function and \[v\] is the second function, to solve the given integral. And finally, we will substitute the value of \[t\]. Hence, we get the required result.
Complete step by step answer:
We have to solve the integral: \[\int {{{\sin }^{ - 1}}\left( {2x} \right)dx} \]
Let us consider the given integral as,
\[I = \int {{{\sin }^{ - 1}}\left( {2x} \right)dx} {\text{ }} - - - \left( i \right)\]
Now let us assume
\[{\sin ^{ - 1}}2x = t{\text{ }} - - - \left( {ii} \right)\]
Now we know that
If \[{\sin ^{ - 1}}x = a\] then \[x = \sin a\]
Therefore, from equation \[\left( {ii} \right)\] we have
\[2x = \sin t{\text{ }} - - - \left( {iii} \right)\]
\[ \Rightarrow x = \dfrac{{\sin t}}{2}{\text{ }} - - - \left( {iv} \right)\]
Now on differentiating equation \[\left( {iv} \right)\] with respect to \[x\] we get
\[dx = \dfrac{{\cos t}}{2}dt\]
Now on substituting the values in the equation \[\left( i \right)\] we get
\[I = \int {t \cdot \dfrac{{\cos t}}{2}dt} \]
\[ \Rightarrow I = \dfrac{1}{2}\int {t \cdot \cos tdt} {\text{ }} - - - \left( v \right)\]
Now using integration by parts,
We know that
\[\int {\left( {u \cdot v} \right)dx = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } } {\text{ }}dx\]
From equation \[\left( v \right)\] we have
\[u = t\] and \[v = \cos t\]
Therefore, we have
\[I = \dfrac{1}{2}\int {\left( {t \cdot \cos t} \right)dt{\text{ }} = {\text{ }}\dfrac{1}{2}\left[ {t\int {\cos tdt - \int {\left( {\dfrac{{dt}}{{dt}}\int {\cos tdt} } \right)} } dt} \right]} + c\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {t\int {\cos tdt - \int {\left( {\dfrac{{dt}}{{dt}}\int {\cos tdt} } \right)} } dt} \right] + c{\text{ }} - - - \left( {vi} \right)\]
Now we know that
\[\int {\cos t} {\text{ }}dt = \sin t\]
\[\dfrac{{dt}}{{dt}} = 1\]
Therefore, from the equation \[\left( {vi} \right)\] we get
\[ \Rightarrow I = \dfrac{1}{2}\left[ {t \cdot \sin t - \int {1 \cdot \sin t{\text{ }}dt} } \right] + c\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {t \cdot \sin t - \int {\sin t{\text{ }}dt} } \right] + c\]
We know that
\[\int {\sin t} {\text{ }}dt = - \cos t\]
Therefore, we get
\[ \Rightarrow I = \dfrac{1}{2}\left[ {t \cdot \sin t - \left( { - \cos t} \right)} \right] + c\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {t \cdot \sin t + \cos t} \right] + c\]
Now back substituting the value from equation \[\left( {ii} \right)\] and equation \[\left( {iii} \right)\] we get
\[ \Rightarrow I = \dfrac{1}{2}\left[ {{{\sin }^{ - 1}}\left( {2x} \right) \cdot 2x + \cos t} \right] + c{\text{ }} - - - \left( {vii} \right)\]
As we know that
\[\cos x = \sqrt {1 - {{\sin }^2}x} \]
Therefore, \[\cos t = \sqrt {1 - {{\sin }^2}t} \]
\[ \Rightarrow \cos t = \sqrt {1 - 4{x^2}} \]
Therefore, from equation \[\left( {vii} \right)\] we get
\[ \therefore I = \dfrac{1}{2}\left[ {{{\sin }^{ - 1}}\left( {2x} \right) \cdot 2x + \sqrt {1 - 4{x^2}} } \right] + c{\text{ }}\]
Hence, the value of the integral \[\int {{{\sin }^{ - 1}}\left( {2x} \right)dx} \] is \[\dfrac{1}{2}\left[ {{{\sin }^{ - 1}}\left( {2x} \right) \cdot 2x + \sqrt {1 - 4{x^2}} } \right] + c{\text{ }}\].
Note: The given integral is an indefinite integral. So, always remember while calculating the indefinite integral never forget to add constant \[c\] in the final result. Also remember you cannot choose the first and second functions in the formula of integration by parts as you like. Always choose them by using “ILATE” where
-$I$ stands for Inverse trigonometric functions
-$L$ stands for logarithmic functions
-$A$ stands for Algebraic functions
-$T$ stands for Trigonometric functions
-$E$ stands for exponent function
Complete step by step answer:
We have to solve the integral: \[\int {{{\sin }^{ - 1}}\left( {2x} \right)dx} \]
Let us consider the given integral as,
\[I = \int {{{\sin }^{ - 1}}\left( {2x} \right)dx} {\text{ }} - - - \left( i \right)\]
Now let us assume
\[{\sin ^{ - 1}}2x = t{\text{ }} - - - \left( {ii} \right)\]
Now we know that
If \[{\sin ^{ - 1}}x = a\] then \[x = \sin a\]
Therefore, from equation \[\left( {ii} \right)\] we have
\[2x = \sin t{\text{ }} - - - \left( {iii} \right)\]
\[ \Rightarrow x = \dfrac{{\sin t}}{2}{\text{ }} - - - \left( {iv} \right)\]
Now on differentiating equation \[\left( {iv} \right)\] with respect to \[x\] we get
\[dx = \dfrac{{\cos t}}{2}dt\]
Now on substituting the values in the equation \[\left( i \right)\] we get
\[I = \int {t \cdot \dfrac{{\cos t}}{2}dt} \]
\[ \Rightarrow I = \dfrac{1}{2}\int {t \cdot \cos tdt} {\text{ }} - - - \left( v \right)\]
Now using integration by parts,
We know that
\[\int {\left( {u \cdot v} \right)dx = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } } {\text{ }}dx\]
From equation \[\left( v \right)\] we have
\[u = t\] and \[v = \cos t\]
Therefore, we have
\[I = \dfrac{1}{2}\int {\left( {t \cdot \cos t} \right)dt{\text{ }} = {\text{ }}\dfrac{1}{2}\left[ {t\int {\cos tdt - \int {\left( {\dfrac{{dt}}{{dt}}\int {\cos tdt} } \right)} } dt} \right]} + c\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {t\int {\cos tdt - \int {\left( {\dfrac{{dt}}{{dt}}\int {\cos tdt} } \right)} } dt} \right] + c{\text{ }} - - - \left( {vi} \right)\]
Now we know that
\[\int {\cos t} {\text{ }}dt = \sin t\]
\[\dfrac{{dt}}{{dt}} = 1\]
Therefore, from the equation \[\left( {vi} \right)\] we get
\[ \Rightarrow I = \dfrac{1}{2}\left[ {t \cdot \sin t - \int {1 \cdot \sin t{\text{ }}dt} } \right] + c\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {t \cdot \sin t - \int {\sin t{\text{ }}dt} } \right] + c\]
We know that
\[\int {\sin t} {\text{ }}dt = - \cos t\]
Therefore, we get
\[ \Rightarrow I = \dfrac{1}{2}\left[ {t \cdot \sin t - \left( { - \cos t} \right)} \right] + c\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {t \cdot \sin t + \cos t} \right] + c\]
Now back substituting the value from equation \[\left( {ii} \right)\] and equation \[\left( {iii} \right)\] we get
\[ \Rightarrow I = \dfrac{1}{2}\left[ {{{\sin }^{ - 1}}\left( {2x} \right) \cdot 2x + \cos t} \right] + c{\text{ }} - - - \left( {vii} \right)\]
As we know that
\[\cos x = \sqrt {1 - {{\sin }^2}x} \]
Therefore, \[\cos t = \sqrt {1 - {{\sin }^2}t} \]
\[ \Rightarrow \cos t = \sqrt {1 - 4{x^2}} \]
Therefore, from equation \[\left( {vii} \right)\] we get
\[ \therefore I = \dfrac{1}{2}\left[ {{{\sin }^{ - 1}}\left( {2x} \right) \cdot 2x + \sqrt {1 - 4{x^2}} } \right] + c{\text{ }}\]
Hence, the value of the integral \[\int {{{\sin }^{ - 1}}\left( {2x} \right)dx} \] is \[\dfrac{1}{2}\left[ {{{\sin }^{ - 1}}\left( {2x} \right) \cdot 2x + \sqrt {1 - 4{x^2}} } \right] + c{\text{ }}\].
Note: The given integral is an indefinite integral. So, always remember while calculating the indefinite integral never forget to add constant \[c\] in the final result. Also remember you cannot choose the first and second functions in the formula of integration by parts as you like. Always choose them by using “ILATE” where
-$I$ stands for Inverse trigonometric functions
-$L$ stands for logarithmic functions
-$A$ stands for Algebraic functions
-$T$ stands for Trigonometric functions
-$E$ stands for exponent function
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

