
Solve the following inequality:
\[({x^2} - 2x)(2x - 2) - 9\dfrac{{2x - 2}}{{{x^2} - 2x}} \leqslant 0\]
Answer
483.3k+ views
Hint: We have to find the value of \[x\] from the given expression of inequality \[({x^2} - 2x)(2x - 2) - 9\dfrac{{2x - 2}}{{{x^2} - 2x}} \leqslant 0\]. We solve this question using the concept of solving linear equations of inequality. We will first simplify the given equation by taking \[(2x - 2)\] common from the left-hand side of the inequality. Then we factorise the obtained expression into its factors. And then by further solving we will find the range for the values of \[x\].
Complete step by step answer:
Given, \[({x^2} - 2x)(2x - 2) - \dfrac{{9\left( {2x - 2} \right)}}{{{x^2} - 2x}} \leqslant 0\]
By taking \[(2x - 2)\] common from left-hand side of the inequality, we get
\[ \Rightarrow (2x - 2)\left[ {({x^2} - 2x) - \dfrac{9}{{{x^2} - 2x}}} \right] \leqslant 0\]
On solving, we get
\[ \Rightarrow (2x - 2)\left[ {\dfrac{{{{({x^2} - 2x)}^2} - 9}}{{({x^2} - 2x)}}} \right] \leqslant 0\]
On rewriting the above inequality, we get
\[ \Rightarrow (2x - 2)\left[ {\dfrac{{{{({x^2} - 2x)}^2} - {{(3)}^2}}}{{({x^2} - 2x)}}} \right] \leqslant 0\]
Simplifying the numerator using the formula: \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\], we get
\[ \Rightarrow (2x - 2)\left[ {\dfrac{{\left( {{x^2} - 2x - 3} \right)\left( {{x^2} - 2x + 3} \right)}}{{({x^2} - 2x)}}} \right] \leqslant 0\]
Adding and subtracting in \[1\] in \[\left( {{x^2} - 2x + 3} \right)\], we get
\[ \Rightarrow (2x - 2)\left[ {\dfrac{{\left( {{x^2} - 2x - 3} \right)\left( {{x^2} - 2x + 1 + 3 - 1} \right)}}{{({x^2} - 2x)}}} \right] \leqslant 0\]
As \[\left( {{x^2} - 2x + 1} \right) = {\left( {x - 1} \right)^2}\], we can write the above inequality as
\[ \Rightarrow (2x - 2)\left[ {\dfrac{{\left( {{x^2} - 2x - 3} \right)\left( {{{\left( {x - 1} \right)}^2} + 2} \right)}}{{({x^2} - 2x)}}} \right] \leqslant 0\]
On further factorising and we get
\[ \Rightarrow (2x - 2)\left[ {\dfrac{{\left( {{x^2} + x - 3x - 3} \right)\left( {{{\left( {x - 1} \right)}^2} + 2} \right)}}{{({x^2} - 2x)}}} \right] \leqslant 0\]
Taking \[x\] common and on simplifying we get,
\[ \Rightarrow (2x - 2)\left[ {\dfrac{{\left( {x + 1} \right)\left( {x - 3} \right)\left( {{{\left( {x - 1} \right)}^2} + 2} \right)}}{{({x^2} - 2x)}}} \right] \leqslant 0\]
As \[{\left( {x - 1} \right)^2} + 2 > 0\], we can divide both the sides by \[\left( {{{\left( {x - 1} \right)}^2} + 2} \right)\], therefore we get
\[ \Rightarrow (2x - 2)\dfrac{{\left( {x + 1} \right)\left( {x - 3} \right)}}{{({x^2} - 2x)}} \leqslant 0\]
Taking \[2\] common from the numerator and \[x\] from denominator and on simplifying we get
\[ \Rightarrow \dfrac{{2(x - 1)\left( {x + 1} \right)\left( {x - 3} \right)}}{{x(x - 2)}} \leqslant 0\]
Dividing both the sides by \[2\], we get
\[ \Rightarrow \dfrac{{(x - 1)\left( {x + 1} \right)\left( {x - 3} \right)}}{{x(x - 2)}} \leqslant 0\]
Now we will put all the values of \[x\] on number line for which equality holds,
Let’s take any value of \[x\] greater than \[3\], say \[x = 4\], we get the value of \[\dfrac{{(x - 1)\left( {x + 1} \right)\left( {x - 3} \right)}}{{x(x - 2)}}\] as
\[ \Rightarrow \dfrac{{(4 - 1)\left( {4 + 1} \right)\left( {4 - 3} \right)}}{{4(4 - 2)}} = \dfrac{{15}}{8} > 0\]
On taking any value greater than \[3\], we get the value of inequality greater than zero.
Now taking any number between \[3\] and \[2\], say \[2.5\], we get
\[ \Rightarrow \dfrac{{(2.5 - 1)\left( {2.5 + 1} \right)\left( {2.5 - 3} \right)}}{{\left( {2.5} \right)(2.5 - 2)}} = - 2.1 < 0\]
Therefore, on taking any value between \[3\] and \[2\], we will get the value of inequality less than zero.
Now taking any number between \[2\] and \[1\], say \[1.5\], we get
\[ \Rightarrow \dfrac{{(1.5 - 1)\left( {1.5 + 1} \right)\left( {1.5 - 3} \right)}}{{\left( {1.5} \right)(1.5 - 2)}} = 2.5 > 0\]
Therefore, on taking any value between \[2\] and \[1\], we will get the value of inequality greater than zero.
Now, taking any number between \[1\] and \[0\], say \[0.5\], we get
\[ \Rightarrow \dfrac{{(0.5 - 1)\left( {0.5 + 1} \right)\left( {0.5 - 3} \right)}}{{\left( {0.5} \right)(0.5 - 2)}} = - 2.5 < 0\]
Therefore, on taking any value between \[1\] and \[0\], we will get the value of inequality less than zero.
Now, taking any number between \[0\] and \[ - 1\], say \[ - 0.5\], we get
\[ \Rightarrow \dfrac{{( - 0.5 - 1)\left( { - 0.5 + 1} \right)\left( { - 0.5 - 3} \right)}}{{\left( { - 0.5} \right)( - 0.5 - 2)}} = 2.1 > 0\]
Therefore, on taking any value between \[0\] and \[ - 1\], we will get the value of inequality greater than zero.
Now, taking any number less than \[ - 1\], say \[ - 2\], we get
\[ \Rightarrow \dfrac{{( - 2 - 1)\left( { - 2 + 1} \right)\left( { - 2 - 3} \right)}}{{\left( { - 2} \right)( - 2 - 2)}} = - \dfrac{{15}}{8} < 0\]
Therefore, on taking any number less than \[ - 1\], we will get the value of inequality less than zero.
Also, at \[x = - 1,0,1,2,3\] equality holds.
Therefore, the interval of \[x\] for which \[({x^2} - 2x)(2x - 2) - 9\dfrac{{2x - 2}}{{{x^2} - 2x}} \leqslant 0\] is when
\[ \Rightarrow x \in ( - \infty , - 1] \cup \left[ {0,1} \right] \cup \left[ {2,3} \right]\]
Note:
The solution range of inequality gives us each and every value of \[x\] which satisfies the equation. Here, one point to note is that square bracket \[\left[ {} \right]\] states that the end elements of the range will satisfy the given expression whereas the round bracket \[\left( {} \right)\] states that the end elements will not satisfy the given expression.
Complete step by step answer:
Given, \[({x^2} - 2x)(2x - 2) - \dfrac{{9\left( {2x - 2} \right)}}{{{x^2} - 2x}} \leqslant 0\]
By taking \[(2x - 2)\] common from left-hand side of the inequality, we get
\[ \Rightarrow (2x - 2)\left[ {({x^2} - 2x) - \dfrac{9}{{{x^2} - 2x}}} \right] \leqslant 0\]
On solving, we get
\[ \Rightarrow (2x - 2)\left[ {\dfrac{{{{({x^2} - 2x)}^2} - 9}}{{({x^2} - 2x)}}} \right] \leqslant 0\]
On rewriting the above inequality, we get
\[ \Rightarrow (2x - 2)\left[ {\dfrac{{{{({x^2} - 2x)}^2} - {{(3)}^2}}}{{({x^2} - 2x)}}} \right] \leqslant 0\]
Simplifying the numerator using the formula: \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\], we get
\[ \Rightarrow (2x - 2)\left[ {\dfrac{{\left( {{x^2} - 2x - 3} \right)\left( {{x^2} - 2x + 3} \right)}}{{({x^2} - 2x)}}} \right] \leqslant 0\]
Adding and subtracting in \[1\] in \[\left( {{x^2} - 2x + 3} \right)\], we get
\[ \Rightarrow (2x - 2)\left[ {\dfrac{{\left( {{x^2} - 2x - 3} \right)\left( {{x^2} - 2x + 1 + 3 - 1} \right)}}{{({x^2} - 2x)}}} \right] \leqslant 0\]
As \[\left( {{x^2} - 2x + 1} \right) = {\left( {x - 1} \right)^2}\], we can write the above inequality as
\[ \Rightarrow (2x - 2)\left[ {\dfrac{{\left( {{x^2} - 2x - 3} \right)\left( {{{\left( {x - 1} \right)}^2} + 2} \right)}}{{({x^2} - 2x)}}} \right] \leqslant 0\]
On further factorising and we get
\[ \Rightarrow (2x - 2)\left[ {\dfrac{{\left( {{x^2} + x - 3x - 3} \right)\left( {{{\left( {x - 1} \right)}^2} + 2} \right)}}{{({x^2} - 2x)}}} \right] \leqslant 0\]
Taking \[x\] common and on simplifying we get,
\[ \Rightarrow (2x - 2)\left[ {\dfrac{{\left( {x + 1} \right)\left( {x - 3} \right)\left( {{{\left( {x - 1} \right)}^2} + 2} \right)}}{{({x^2} - 2x)}}} \right] \leqslant 0\]
As \[{\left( {x - 1} \right)^2} + 2 > 0\], we can divide both the sides by \[\left( {{{\left( {x - 1} \right)}^2} + 2} \right)\], therefore we get
\[ \Rightarrow (2x - 2)\dfrac{{\left( {x + 1} \right)\left( {x - 3} \right)}}{{({x^2} - 2x)}} \leqslant 0\]
Taking \[2\] common from the numerator and \[x\] from denominator and on simplifying we get
\[ \Rightarrow \dfrac{{2(x - 1)\left( {x + 1} \right)\left( {x - 3} \right)}}{{x(x - 2)}} \leqslant 0\]
Dividing both the sides by \[2\], we get
\[ \Rightarrow \dfrac{{(x - 1)\left( {x + 1} \right)\left( {x - 3} \right)}}{{x(x - 2)}} \leqslant 0\]
Now we will put all the values of \[x\] on number line for which equality holds,
Let’s take any value of \[x\] greater than \[3\], say \[x = 4\], we get the value of \[\dfrac{{(x - 1)\left( {x + 1} \right)\left( {x - 3} \right)}}{{x(x - 2)}}\] as
\[ \Rightarrow \dfrac{{(4 - 1)\left( {4 + 1} \right)\left( {4 - 3} \right)}}{{4(4 - 2)}} = \dfrac{{15}}{8} > 0\]
On taking any value greater than \[3\], we get the value of inequality greater than zero.
Now taking any number between \[3\] and \[2\], say \[2.5\], we get
\[ \Rightarrow \dfrac{{(2.5 - 1)\left( {2.5 + 1} \right)\left( {2.5 - 3} \right)}}{{\left( {2.5} \right)(2.5 - 2)}} = - 2.1 < 0\]
Therefore, on taking any value between \[3\] and \[2\], we will get the value of inequality less than zero.
Now taking any number between \[2\] and \[1\], say \[1.5\], we get
\[ \Rightarrow \dfrac{{(1.5 - 1)\left( {1.5 + 1} \right)\left( {1.5 - 3} \right)}}{{\left( {1.5} \right)(1.5 - 2)}} = 2.5 > 0\]
Therefore, on taking any value between \[2\] and \[1\], we will get the value of inequality greater than zero.
Now, taking any number between \[1\] and \[0\], say \[0.5\], we get
\[ \Rightarrow \dfrac{{(0.5 - 1)\left( {0.5 + 1} \right)\left( {0.5 - 3} \right)}}{{\left( {0.5} \right)(0.5 - 2)}} = - 2.5 < 0\]
Therefore, on taking any value between \[1\] and \[0\], we will get the value of inequality less than zero.
Now, taking any number between \[0\] and \[ - 1\], say \[ - 0.5\], we get
\[ \Rightarrow \dfrac{{( - 0.5 - 1)\left( { - 0.5 + 1} \right)\left( { - 0.5 - 3} \right)}}{{\left( { - 0.5} \right)( - 0.5 - 2)}} = 2.1 > 0\]
Therefore, on taking any value between \[0\] and \[ - 1\], we will get the value of inequality greater than zero.
Now, taking any number less than \[ - 1\], say \[ - 2\], we get
\[ \Rightarrow \dfrac{{( - 2 - 1)\left( { - 2 + 1} \right)\left( { - 2 - 3} \right)}}{{\left( { - 2} \right)( - 2 - 2)}} = - \dfrac{{15}}{8} < 0\]
Therefore, on taking any number less than \[ - 1\], we will get the value of inequality less than zero.
Also, at \[x = - 1,0,1,2,3\] equality holds.
Therefore, the interval of \[x\] for which \[({x^2} - 2x)(2x - 2) - 9\dfrac{{2x - 2}}{{{x^2} - 2x}} \leqslant 0\] is when
\[ \Rightarrow x \in ( - \infty , - 1] \cup \left[ {0,1} \right] \cup \left[ {2,3} \right]\]
Note:
The solution range of inequality gives us each and every value of \[x\] which satisfies the equation. Here, one point to note is that square bracket \[\left[ {} \right]\] states that the end elements of the range will satisfy the given expression whereas the round bracket \[\left( {} \right)\] states that the end elements will not satisfy the given expression.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

