
Solve the following expression-
$\smallint {\cos ^5}{\text{x}}.cosecxdx$
Answer
606.9k+ views
- Hint: Integration is a method by which we can find the area under the function of the curve. It is the reverse process of differentiation. The given expression cannot be integrated directly. We need to alter it and substitute a suitable value to make it integrable, and then proceed. We will also use some formulas as-
$\begin{align}
&cosecx = \dfrac{1}{{sinx}}...(1) \\
&{\cos ^2}{\text{x}} + {\sin ^2}{\text{x}} = 1...(2) \\
\end{align} $
$\begin{align}
&\smallint \dfrac{1}{x}dx = \log x + c...\left( 3 \right) \\
&\smallint {x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}...\left( 4 \right) \\
\end{align} $
Complete step-by-step solution -
We have been given that-
$\smallint {\cos ^5}{\text{x}}.cosecxdx$
Using property (1) we can write that-
$\begin{align}
&= \smallint \dfrac{{{{\cos }^5}x}}{{\sin x}}dx \\
&= \smallint \dfrac{{{{\cos }^4}x}}{{\sin x}}\cos xdx \\
&= \smallint \dfrac{{{{\left( {{{\cos }^2}x} \right)}^2}}}{{\sin x}}\cos xdx \\
\end{align} $
Using property (2) we can write that-
$\begin{align}
& = \smallint \dfrac{{{{\left( {1 - {{\sin }^2}{\text{x}}} \right)}^2}}}{{sinx}}cosxdx \\
& By\;{\left( {{\text{a}} + {\text{b}}} \right)^2} = {{\text{a}}^2} + {{\text{b}}^2} + 2ab \\
& = \smallint \left( {\dfrac{{1 + {{\sin }^4} - 2{{\sin }^2}{\text{x}}}}{{sinx}}} \right)cosxdx \\
\end{align} $
Now, let us assume sinx to be t.
t = sinx …(5)
By partially differentiating this equation we get-
dt = cosxdx …(6)
By substituting equations (5) and (6) in the expression we get-
$\begin{align}
& = \smallint \left( {\dfrac{{1 + {{\text{t}}^4} - 2{{\text{t}}^2}}}{{\text{t}}}} \right)dt \\
& = \smallint \left( {\dfrac{1}{{\text{t}}} - 2{\text{t}} + {{\text{t}}^3}} \right)dt \\
\end{align} $
Using properties 3 and 4,
$\begin{align}
& = logt - \dfrac{{2{{\text{t}}^2}}}{2} + \dfrac{{{{\text{t}}^4}}}{4} + {\text{C}} \\
& = \dfrac{{{{\sin }^4}{\text{x}}}}{4} - {\sin ^2}{\text{x}} + \log \left( {sinx} \right) + {\text{C}} \\
\end{align} $
Here C is the integration constant. This is the required answer.
Note: In such types of questions, we need to have knowledge of multiple concepts from trigonometry to integral calculus. We need to change the expression so that it can be converted into an integrable form. Also, we should always remember to add a constant of integration whenever we solve indefinite integrals.
$\begin{align}
&cosecx = \dfrac{1}{{sinx}}...(1) \\
&{\cos ^2}{\text{x}} + {\sin ^2}{\text{x}} = 1...(2) \\
\end{align} $
$\begin{align}
&\smallint \dfrac{1}{x}dx = \log x + c...\left( 3 \right) \\
&\smallint {x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}...\left( 4 \right) \\
\end{align} $
Complete step-by-step solution -
We have been given that-
$\smallint {\cos ^5}{\text{x}}.cosecxdx$
Using property (1) we can write that-
$\begin{align}
&= \smallint \dfrac{{{{\cos }^5}x}}{{\sin x}}dx \\
&= \smallint \dfrac{{{{\cos }^4}x}}{{\sin x}}\cos xdx \\
&= \smallint \dfrac{{{{\left( {{{\cos }^2}x} \right)}^2}}}{{\sin x}}\cos xdx \\
\end{align} $
Using property (2) we can write that-
$\begin{align}
& = \smallint \dfrac{{{{\left( {1 - {{\sin }^2}{\text{x}}} \right)}^2}}}{{sinx}}cosxdx \\
& By\;{\left( {{\text{a}} + {\text{b}}} \right)^2} = {{\text{a}}^2} + {{\text{b}}^2} + 2ab \\
& = \smallint \left( {\dfrac{{1 + {{\sin }^4} - 2{{\sin }^2}{\text{x}}}}{{sinx}}} \right)cosxdx \\
\end{align} $
Now, let us assume sinx to be t.
t = sinx …(5)
By partially differentiating this equation we get-
dt = cosxdx …(6)
By substituting equations (5) and (6) in the expression we get-
$\begin{align}
& = \smallint \left( {\dfrac{{1 + {{\text{t}}^4} - 2{{\text{t}}^2}}}{{\text{t}}}} \right)dt \\
& = \smallint \left( {\dfrac{1}{{\text{t}}} - 2{\text{t}} + {{\text{t}}^3}} \right)dt \\
\end{align} $
Using properties 3 and 4,
$\begin{align}
& = logt - \dfrac{{2{{\text{t}}^2}}}{2} + \dfrac{{{{\text{t}}^4}}}{4} + {\text{C}} \\
& = \dfrac{{{{\sin }^4}{\text{x}}}}{4} - {\sin ^2}{\text{x}} + \log \left( {sinx} \right) + {\text{C}} \\
\end{align} $
Here C is the integration constant. This is the required answer.
Note: In such types of questions, we need to have knowledge of multiple concepts from trigonometry to integral calculus. We need to change the expression so that it can be converted into an integrable form. Also, we should always remember to add a constant of integration whenever we solve indefinite integrals.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

How many states of matter are there in total class 12 chemistry CBSE

