
Solve the following equations using the Matrix Inversion method.
$2x - 3y + 6 = 0$ and $6x + y + 8 = 0$.
Answer
461.4k+ views
Hint: If two equations are in the form of $a_1x+b_1y=c_1$ and $a_2x+b_2y=c_2$, then matrix inversion method gives us ${A^{ - 1}}$ to $AX = B$ where $A = \left[ {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}} \\
{{a_2}}&{{b_2}}
\end{array}} \right]$ , $B=\left[ \begin{matrix}
{{c}_{1}} \\
{{c}_{2}} \\
\end{matrix} \right]$
and $X = \left[ \begin{matrix}
{{x}_{1}} \\
{{x}_{2}} \\
\end{matrix} \right]$ . We first convert the equations in standard form $ax + by = c$and then find the determinant and adjoint of $A$. Using the Matrix Inversion formula, we find the value of $X$ in terms of a matrix.
Formula used:
The given equations are $2x - 3y + 6 = 0$ and $6x + y + 8 = 0$
To use the matrix inversion method, we have to first convert the equations in standard form as $ax + by = c$.
The equations in standard form are $2x - 3y = - 6$ and $6x + y = - 8$
The matrix equation is $AX = B$
Where $A = \left[ {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}} \\
{{a_2}}&{{b_2}}
\end{array}} \right]$ , $B = \left[ {\begin{array}{*{20}{c}}
{{c_1}}\\
{{c_2}}
\end{array}} \right]$ and $X = \left[ {\begin{array}{*{20}{c}}
{{x_1}}\\
{{x_2}} \end{array}} \right]$
The values of equation in matrix form are
$A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
6&1
\end{array}} \right]$ , $B = \left[ {\begin{array}{*{20}{c}}
-6\\
-8
\end{array}} \right]$ and $X = \left[ {\begin{array}{*{20}{c}}
x\\
y \end{array}} \right]$
Using the Matrix Inversion method,
$\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
6&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x\\
y \end{array}} \right]= \left[ {\begin{array}{*{20}{c}}
-6\\
-8
\end{array}} \right]$
The matrix equation is $AX = B$
Pre multiplying the above matrix by ${A^{ - 1}}$ on both sides of equation we get,
${A^{ - 1}}AX = {A^{ - 1}}B$
We know, ${A^{ - 1}}A = I$ and $IX = X$,
Therefore, $IX = {A^{ - 1}}B$
$X = {A^{ - 1}}B$
Now we will find the determinant of matrix $A$.
$A = \left| {\begin{array}{*{20}{c}}
2&{ - 3} \\
6&1
\end{array}} \right|$
$\left| A \right| = (2 \times 1) - ( - 3 \times 6)$
$\left| A \right| = 2 + (3 \times 6)$
$\left| A \right| = 2 + 18$
$\left| A \right| = 20$
If $A = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]$ then adjoint of $A = \left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]$
Here $A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
6&1
\end{array}} \right]$ then adjoint of $A = \left[ {\begin{array}{*{20}{c}}
1&3 \\
{ - 6}&2
\end{array}} \right]$
We know, ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A)$
Substituting the values in the formula,
${A^{ - 1}} = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
1&3 \\
{ - 6}&2
\end{array}} \right]$
Now we have ${A^{ - 1}} = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
1&3 \\
{ - 6}&2
\end{array}} \right]$, $B = \left[ {\begin{array}{*{20}{c}}
-6 \\
-8
\end{array}} \right]$ and $X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]$
So, substituting these values in the equation $X = {A^{ - 1}}B$,
$X = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
1&3 \\
{ - 6}&2
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
-6 \\
-8
\end{array}} \right]$
Multiplying the matrices,
$X = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
(1 \times - 6) + (3 \times - 8) \\
( - 6 \times - 6) + (2 \times - 8)
\end{array}} \right]$
Solving the arithmetic,
$X = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
-6-24 \\
36-16
\end{array}} \right]$
Solving the arithmetic,
$X = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
-30 \\
20
\end{array}} \right]$
Taking the determinant inside the matrix,
$X = \left[ {\begin{array}{*{20}{c}}
\dfrac{-30}{{20}} \\
\dfrac{20}{{20}}
\end{array}} \right]$
Simplifying the elements,
$X = \left[ {\begin{array}{*{20}{c}}
\dfrac{-3}{{2}} \\
1
\end{array}} \right]$
$X = \left[ {\begin{array}{*{20}{c}}
\dfrac{-3}{{2}} \\
1
\end{array}} \right]= \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]$
Therefore, we get, $x = \dfrac{{ - 3}}{2}$ and $y = 1$ .
The solution of the matrices is $x = \dfrac{{ - 3}}{2}$ and $y = 1$.
Note:
Matrix Inversion method can be applied only when the coefficient matrix is a square matrix and non-singular. The different types of inversion methods are Gauss-Jordan Elimination, Classical Adjoint method, Partition method.
{{a_1}}&{{b_1}} \\
{{a_2}}&{{b_2}}
\end{array}} \right]$ , $B=\left[ \begin{matrix}
{{c}_{1}} \\
{{c}_{2}} \\
\end{matrix} \right]$
and $X = \left[ \begin{matrix}
{{x}_{1}} \\
{{x}_{2}} \\
\end{matrix} \right]$ . We first convert the equations in standard form $ax + by = c$and then find the determinant and adjoint of $A$. Using the Matrix Inversion formula, we find the value of $X$ in terms of a matrix.
Formula used:
The given equations are $2x - 3y + 6 = 0$ and $6x + y + 8 = 0$
To use the matrix inversion method, we have to first convert the equations in standard form as $ax + by = c$.
The equations in standard form are $2x - 3y = - 6$ and $6x + y = - 8$
The matrix equation is $AX = B$
Where $A = \left[ {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}} \\
{{a_2}}&{{b_2}}
\end{array}} \right]$ , $B = \left[ {\begin{array}{*{20}{c}}
{{c_1}}\\
{{c_2}}
\end{array}} \right]$ and $X = \left[ {\begin{array}{*{20}{c}}
{{x_1}}\\
{{x_2}} \end{array}} \right]$
The values of equation in matrix form are
$A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
6&1
\end{array}} \right]$ , $B = \left[ {\begin{array}{*{20}{c}}
-6\\
-8
\end{array}} \right]$ and $X = \left[ {\begin{array}{*{20}{c}}
x\\
y \end{array}} \right]$
Using the Matrix Inversion method,
$\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
6&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x\\
y \end{array}} \right]= \left[ {\begin{array}{*{20}{c}}
-6\\
-8
\end{array}} \right]$
The matrix equation is $AX = B$
Pre multiplying the above matrix by ${A^{ - 1}}$ on both sides of equation we get,
${A^{ - 1}}AX = {A^{ - 1}}B$
We know, ${A^{ - 1}}A = I$ and $IX = X$,
Therefore, $IX = {A^{ - 1}}B$
$X = {A^{ - 1}}B$
Now we will find the determinant of matrix $A$.
$A = \left| {\begin{array}{*{20}{c}}
2&{ - 3} \\
6&1
\end{array}} \right|$
$\left| A \right| = (2 \times 1) - ( - 3 \times 6)$
$\left| A \right| = 2 + (3 \times 6)$
$\left| A \right| = 2 + 18$
$\left| A \right| = 20$
If $A = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]$ then adjoint of $A = \left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]$
Here $A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
6&1
\end{array}} \right]$ then adjoint of $A = \left[ {\begin{array}{*{20}{c}}
1&3 \\
{ - 6}&2
\end{array}} \right]$
We know, ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A)$
Substituting the values in the formula,
${A^{ - 1}} = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
1&3 \\
{ - 6}&2
\end{array}} \right]$
Now we have ${A^{ - 1}} = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
1&3 \\
{ - 6}&2
\end{array}} \right]$, $B = \left[ {\begin{array}{*{20}{c}}
-6 \\
-8
\end{array}} \right]$ and $X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]$
So, substituting these values in the equation $X = {A^{ - 1}}B$,
$X = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
1&3 \\
{ - 6}&2
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
-6 \\
-8
\end{array}} \right]$
Multiplying the matrices,
$X = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
(1 \times - 6) + (3 \times - 8) \\
( - 6 \times - 6) + (2 \times - 8)
\end{array}} \right]$
Solving the arithmetic,
$X = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
-6-24 \\
36-16
\end{array}} \right]$
Solving the arithmetic,
$X = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
-30 \\
20
\end{array}} \right]$
Taking the determinant inside the matrix,
$X = \left[ {\begin{array}{*{20}{c}}
\dfrac{-30}{{20}} \\
\dfrac{20}{{20}}
\end{array}} \right]$
Simplifying the elements,
$X = \left[ {\begin{array}{*{20}{c}}
\dfrac{-3}{{2}} \\
1
\end{array}} \right]$
$X = \left[ {\begin{array}{*{20}{c}}
\dfrac{-3}{{2}} \\
1
\end{array}} \right]= \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]$
Therefore, we get, $x = \dfrac{{ - 3}}{2}$ and $y = 1$ .
The solution of the matrices is $x = \dfrac{{ - 3}}{2}$ and $y = 1$.
Note:
Matrix Inversion method can be applied only when the coefficient matrix is a square matrix and non-singular. The different types of inversion methods are Gauss-Jordan Elimination, Classical Adjoint method, Partition method.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

