
Solve the following equation, ${{\tan }^{-1}}\dfrac{1}{4}+2{{\tan }^{-1}}\dfrac{1}{5}+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4}$.
Answer
606.9k+ views
Hint:To prove the equation given in the question, we should have some knowledge of a few inverse trigonometric formulas like, ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$ and $2{{\tan }^{-1}}a={{\tan }^{-1}}\left( \dfrac{2a}{1-{{a}^{2}}} \right)$. We also should remember a few standard trigonometric angles like $\tan \dfrac{\pi }{4}=1$. We can prove the given equation by using these formulas.
Complete step-by-step answer:
In this question, we have been asked to solve the value of x in the equation, ${{\tan }^{-1}}\dfrac{1}{4}+2{{\tan }^{-1}}\dfrac{1}{5}+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4}$. Now, we know that $2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$. So, we can write the given equality for $x=\dfrac{1}{5}$ as,
${{\tan }^{-1}}\dfrac{1}{4}+{{\tan }^{-1}}\left[ \dfrac{2\left( \dfrac{1}{5} \right)}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4}$
Now, we will simplify it further to get,
$\begin{align}
& {{\tan }^{-1}}\dfrac{1}{4}+{{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{2}{5} \right)}{1-\left( \dfrac{1}{25} \right)} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\dfrac{1}{4}+{{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{2}{5} \right)}{\dfrac{25-1}{25}} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\dfrac{1}{4}+{{\tan }^{-1}}\left[ \dfrac{2\times 25}{5\times 24} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\dfrac{1}{4}+{{\tan }^{-1}}\left[ \dfrac{5}{12} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
\end{align}$
Now, we know that ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$. So, for $a=\dfrac{1}{4}$ and $b=\dfrac{5}{12}$, we get the equation as,
${{\tan }^{-1}}\left[ \dfrac{\dfrac{1}{4}+\dfrac{5}{12}}{1-\dfrac{1}{4}\times \dfrac{5}{12}} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4}$
And we can further simplify it as,
$\begin{align}
& {{\tan }^{-1}}\left[ \dfrac{\dfrac{3+5}{12}}{\dfrac{48-5}{48}} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{8\times 48}{12\times 43} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{32}{43} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
\end{align}$
We will again apply the formula ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$. So, for $a=\dfrac{32}{43}$ and $b=\dfrac{1}{6}$, we get the equation as,
${{\tan }^{-1}}\left[ \dfrac{\dfrac{32}{43}+\dfrac{1}{6}}{1-\dfrac{32}{43}\times \dfrac{1}{6}} \right]+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4}$
And we can simplify it further as,
$\begin{align}
& {{\tan }^{-1}}\left[ \dfrac{\dfrac{192+43}{43\times 6}}{\dfrac{258-32}{43\times 6}} \right]+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{235\times 258}{226\times 258} \right]+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{235}{226} \right]+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
\end{align}$
We know that $\tan \dfrac{\pi }{4}=1$. So, we can write $\dfrac{\pi }{4}={{\tan }^{-1}}1$. Therefore, we get the equation as,
${{\tan }^{-1}}\left[ \dfrac{235}{226} \right]+{{\tan }^{-1}}\dfrac{1}{x}={{\tan }^{-1}}1$
And if we keep the terms with x on one side and the others on the other side, then we get the above equation as follows,
${{\tan }^{-1}}\dfrac{1}{x}={{\tan }^{-1}}1-{{\tan }^{-1}}\left[ \dfrac{235}{226} \right]$
Now, we know that ${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$. So, applying that formula for $a=1$ and $b=\dfrac{235}{226}$, we get the equation as,
${{\tan }^{-1}}\dfrac{1}{x}={{\tan }^{-1}}\left[ \dfrac{1-\dfrac{235}{226}}{1+1\times \dfrac{235}{226}} \right]$
And on further simplification, we get,
$\begin{align}
& {{\tan }^{-1}}\dfrac{1}{x}={{\tan }^{-1}}\left[ \dfrac{\dfrac{226-235}{226}}{\dfrac{226+235}{226}} \right] \\
& \Rightarrow {{\tan }^{-1}}\dfrac{1}{x}={{\tan }^{-1}}\left[ \dfrac{-9\times 226}{461\times 226} \right] \\
\end{align}$
Now, we will take the tangent ratio of the equality. So, we get,
$\tan \left( {{\tan }^{-1}}\dfrac{1}{x} \right)=\tan \left( {{\tan }^{-1}}\left( \dfrac{-9\times 226}{461\times 226} \right) \right)$
And we know that $\tan \left( {{\tan }^{-1}}\alpha \right)=\alpha $. So, we get the equation as,
$\begin{align}
& \dfrac{1}{x}=\dfrac{-9}{461} \\
& \Rightarrow x=\dfrac{-461}{9} \\
\end{align}$
Hence, we can say that we get $x=\dfrac{-461}{9}$ for the equation, ${{\tan }^{-1}}\dfrac{1}{4}+2{{\tan }^{-1}}\dfrac{1}{5}+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4}$.
Note: There is a possibility of calculation mistakes in this question due to the long calculations involved. Also, sometimes, we write the wrong formula of ${{\tan }^{-1}}a+{{\tan }^{-1}}b$ and ${{\tan }^{-1}}a-{{\tan }^{-1}}b$, which are, ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$ and ${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$. So, one should be careful in writing the formulas.
Complete step-by-step answer:
In this question, we have been asked to solve the value of x in the equation, ${{\tan }^{-1}}\dfrac{1}{4}+2{{\tan }^{-1}}\dfrac{1}{5}+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4}$. Now, we know that $2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$. So, we can write the given equality for $x=\dfrac{1}{5}$ as,
${{\tan }^{-1}}\dfrac{1}{4}+{{\tan }^{-1}}\left[ \dfrac{2\left( \dfrac{1}{5} \right)}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4}$
Now, we will simplify it further to get,
$\begin{align}
& {{\tan }^{-1}}\dfrac{1}{4}+{{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{2}{5} \right)}{1-\left( \dfrac{1}{25} \right)} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\dfrac{1}{4}+{{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{2}{5} \right)}{\dfrac{25-1}{25}} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\dfrac{1}{4}+{{\tan }^{-1}}\left[ \dfrac{2\times 25}{5\times 24} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\dfrac{1}{4}+{{\tan }^{-1}}\left[ \dfrac{5}{12} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
\end{align}$
Now, we know that ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$. So, for $a=\dfrac{1}{4}$ and $b=\dfrac{5}{12}$, we get the equation as,
${{\tan }^{-1}}\left[ \dfrac{\dfrac{1}{4}+\dfrac{5}{12}}{1-\dfrac{1}{4}\times \dfrac{5}{12}} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4}$
And we can further simplify it as,
$\begin{align}
& {{\tan }^{-1}}\left[ \dfrac{\dfrac{3+5}{12}}{\dfrac{48-5}{48}} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{8\times 48}{12\times 43} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{32}{43} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
\end{align}$
We will again apply the formula ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$. So, for $a=\dfrac{32}{43}$ and $b=\dfrac{1}{6}$, we get the equation as,
${{\tan }^{-1}}\left[ \dfrac{\dfrac{32}{43}+\dfrac{1}{6}}{1-\dfrac{32}{43}\times \dfrac{1}{6}} \right]+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4}$
And we can simplify it further as,
$\begin{align}
& {{\tan }^{-1}}\left[ \dfrac{\dfrac{192+43}{43\times 6}}{\dfrac{258-32}{43\times 6}} \right]+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{235\times 258}{226\times 258} \right]+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{235}{226} \right]+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\
\end{align}$
We know that $\tan \dfrac{\pi }{4}=1$. So, we can write $\dfrac{\pi }{4}={{\tan }^{-1}}1$. Therefore, we get the equation as,
${{\tan }^{-1}}\left[ \dfrac{235}{226} \right]+{{\tan }^{-1}}\dfrac{1}{x}={{\tan }^{-1}}1$
And if we keep the terms with x on one side and the others on the other side, then we get the above equation as follows,
${{\tan }^{-1}}\dfrac{1}{x}={{\tan }^{-1}}1-{{\tan }^{-1}}\left[ \dfrac{235}{226} \right]$
Now, we know that ${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$. So, applying that formula for $a=1$ and $b=\dfrac{235}{226}$, we get the equation as,
${{\tan }^{-1}}\dfrac{1}{x}={{\tan }^{-1}}\left[ \dfrac{1-\dfrac{235}{226}}{1+1\times \dfrac{235}{226}} \right]$
And on further simplification, we get,
$\begin{align}
& {{\tan }^{-1}}\dfrac{1}{x}={{\tan }^{-1}}\left[ \dfrac{\dfrac{226-235}{226}}{\dfrac{226+235}{226}} \right] \\
& \Rightarrow {{\tan }^{-1}}\dfrac{1}{x}={{\tan }^{-1}}\left[ \dfrac{-9\times 226}{461\times 226} \right] \\
\end{align}$
Now, we will take the tangent ratio of the equality. So, we get,
$\tan \left( {{\tan }^{-1}}\dfrac{1}{x} \right)=\tan \left( {{\tan }^{-1}}\left( \dfrac{-9\times 226}{461\times 226} \right) \right)$
And we know that $\tan \left( {{\tan }^{-1}}\alpha \right)=\alpha $. So, we get the equation as,
$\begin{align}
& \dfrac{1}{x}=\dfrac{-9}{461} \\
& \Rightarrow x=\dfrac{-461}{9} \\
\end{align}$
Hence, we can say that we get $x=\dfrac{-461}{9}$ for the equation, ${{\tan }^{-1}}\dfrac{1}{4}+2{{\tan }^{-1}}\dfrac{1}{5}+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4}$.
Note: There is a possibility of calculation mistakes in this question due to the long calculations involved. Also, sometimes, we write the wrong formula of ${{\tan }^{-1}}a+{{\tan }^{-1}}b$ and ${{\tan }^{-1}}a-{{\tan }^{-1}}b$, which are, ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$ and ${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$. So, one should be careful in writing the formulas.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

