
Solve the following equation for $x$.
${{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)=\dfrac{1}{2}{{\tan }^{-1}}x$
Answer
513.9k+ views
Hint: For solving this question we will use the formula ${{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)={{\tan }^{-1}}x-{{\tan }^{-1}}y$ to write ${{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)={{\tan }^{-1}}1-{{\tan }^{-1}}x$ directly. After that, we will find the value of ${{\tan }^{-1}}x$ and use the formula ${{\tan }^{-1}}1=\dfrac{\pi }{4}$ and $\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}$ for calculating the suitable value of $x$.
Complete step-by-step solution -
Given:
We have to find a suitable value of $x$ and we have following equation:
${{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)=\dfrac{1}{2}{{\tan }^{-1}}x$
Now, before we proceed we should know the following formula:
$\begin{align}
&{{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)={{\tan }^{-1}}x-{{\tan }^{-1}}y\text{ }\left( \text{if }xy>-1 \right).............................\left( 1 \right) \\
& {{\tan }^{-1}}1=\dfrac{\pi }{4}..................................\left( 2 \right) \\
& \tan \left( {{\tan }^{-1}}x \right)= x\ \text{where}\ x \in \text{R} ..........................\left( 3 \right) \\
& \tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}.................................\left( 4 \right) \\
\end{align} $
Now, we will use the formula from the equation (1) to write ${{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)={{\tan }^{-1}}1-{{\tan }^{-1}}x$ . Then,
$\begin{align}
& {{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)=\dfrac{1}{2}{{\tan }^{-1}}x \\
& \Rightarrow {{\tan }^{-1}}1-{{\tan }^{-1}}x=\dfrac{1}{2}{{\tan }^{-1}}x \\
& \Rightarrow {{\tan }^{-1}}1={{\tan }^{-1}}x+\dfrac{1}{2}{{\tan }^{-1}}x \\
& \Rightarrow {{\tan }^{-1}}1=\dfrac{3}{2}{{\tan }^{-1}}x \\
\end{align} $
Now, we will use the formula from the equation (2) to write ${{\tan }^{-1}}1=\dfrac{\pi }{4}$ in the above equation. Then,
$\begin{align}
& {{\tan }^{-1}}1=\dfrac{3}{2}{{\tan }^{-1}}x \\
& \Rightarrow \dfrac{\pi }{4}=\dfrac{3}{2}{{\tan }^{-1}}x \\
& \Rightarrow \dfrac{3}{2}{{\tan }^{-1}}x=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}x=\dfrac{\pi }{4}\times \dfrac{2}{3} \\
& \Rightarrow {{\tan }^{-1}}x=\dfrac{\pi }{6} \\
\end{align}$
Now, we will apply $\tan $ function on both sides in the above equation. Then,
$\begin{align}
& {{\tan }^{-1}}x=\dfrac{\pi }{6} \\
& \Rightarrow \tan \left( {{\tan }^{-1}}x \right)=\tan \dfrac{\pi }{6} \\
\end{align}$
Now, we will use the formula from the equation (3) to write $\tan \left( {{\tan }^{-1}}x \right)=x$ where $x \in \text{R} $ in the above equation and formula from the equation (4) to write $\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}$ in the above equation. Then,
$\begin{align}
& \tan \left( {{\tan }^{-1}}x \right)=\tan \dfrac{\pi }{6} \\
& \Rightarrow x=\dfrac{1}{\sqrt{3}} \\
\end{align}$
Now, from the above result, it is evident that, $\dfrac{1}{\sqrt{3}}>-1$ so, we can write ${{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)={{\tan }^{-1}}1-{{\tan }^{-1}}x$ . Then, the value of $x$ will be equal to $\dfrac{1}{\sqrt{3}}$ .
Thus, if ${{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)=\dfrac{1}{2}{{\tan }^{-1}}x$ then, the suitable value of $x$ will be $\dfrac{1}{\sqrt{3}}$.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct result quickly. Then, we should apply formulas of inverse trigonometric functions like ${{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)={{\tan }^{-1}}x-{{\tan }^{-1}}y$ in a correct manner and we should check our final answer with the condition of the formula for the justification of our answer. Moreover, we should avoid calculation mistakes while solving to get the correct result.
Complete step-by-step solution -
Given:
We have to find a suitable value of $x$ and we have following equation:
${{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)=\dfrac{1}{2}{{\tan }^{-1}}x$
Now, before we proceed we should know the following formula:
$\begin{align}
&{{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)={{\tan }^{-1}}x-{{\tan }^{-1}}y\text{ }\left( \text{if }xy>-1 \right).............................\left( 1 \right) \\
& {{\tan }^{-1}}1=\dfrac{\pi }{4}..................................\left( 2 \right) \\
& \tan \left( {{\tan }^{-1}}x \right)= x\ \text{where}\ x \in \text{R} ..........................\left( 3 \right) \\
& \tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}.................................\left( 4 \right) \\
\end{align} $
Now, we will use the formula from the equation (1) to write ${{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)={{\tan }^{-1}}1-{{\tan }^{-1}}x$ . Then,
$\begin{align}
& {{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)=\dfrac{1}{2}{{\tan }^{-1}}x \\
& \Rightarrow {{\tan }^{-1}}1-{{\tan }^{-1}}x=\dfrac{1}{2}{{\tan }^{-1}}x \\
& \Rightarrow {{\tan }^{-1}}1={{\tan }^{-1}}x+\dfrac{1}{2}{{\tan }^{-1}}x \\
& \Rightarrow {{\tan }^{-1}}1=\dfrac{3}{2}{{\tan }^{-1}}x \\
\end{align} $
Now, we will use the formula from the equation (2) to write ${{\tan }^{-1}}1=\dfrac{\pi }{4}$ in the above equation. Then,
$\begin{align}
& {{\tan }^{-1}}1=\dfrac{3}{2}{{\tan }^{-1}}x \\
& \Rightarrow \dfrac{\pi }{4}=\dfrac{3}{2}{{\tan }^{-1}}x \\
& \Rightarrow \dfrac{3}{2}{{\tan }^{-1}}x=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}x=\dfrac{\pi }{4}\times \dfrac{2}{3} \\
& \Rightarrow {{\tan }^{-1}}x=\dfrac{\pi }{6} \\
\end{align}$
Now, we will apply $\tan $ function on both sides in the above equation. Then,
$\begin{align}
& {{\tan }^{-1}}x=\dfrac{\pi }{6} \\
& \Rightarrow \tan \left( {{\tan }^{-1}}x \right)=\tan \dfrac{\pi }{6} \\
\end{align}$
Now, we will use the formula from the equation (3) to write $\tan \left( {{\tan }^{-1}}x \right)=x$ where $x \in \text{R} $ in the above equation and formula from the equation (4) to write $\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}$ in the above equation. Then,
$\begin{align}
& \tan \left( {{\tan }^{-1}}x \right)=\tan \dfrac{\pi }{6} \\
& \Rightarrow x=\dfrac{1}{\sqrt{3}} \\
\end{align}$
Now, from the above result, it is evident that, $\dfrac{1}{\sqrt{3}}>-1$ so, we can write ${{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)={{\tan }^{-1}}1-{{\tan }^{-1}}x$ . Then, the value of $x$ will be equal to $\dfrac{1}{\sqrt{3}}$ .
Thus, if ${{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)=\dfrac{1}{2}{{\tan }^{-1}}x$ then, the suitable value of $x$ will be $\dfrac{1}{\sqrt{3}}$.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct result quickly. Then, we should apply formulas of inverse trigonometric functions like ${{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)={{\tan }^{-1}}x-{{\tan }^{-1}}y$ in a correct manner and we should check our final answer with the condition of the formula for the justification of our answer. Moreover, we should avoid calculation mistakes while solving to get the correct result.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What I want should not be confused with total inactivity class 12 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
