
Solve the following equation $\dfrac{dy}{dx}-xy={{y}^{2}}{{e}^{x2}}{{/}^{2}}.\sin x$ .
A. ${{e}^{{{x}^{2}}/2}}=y\left( c+\cos x \right)$.
B. ${{e}^{-{{x}^{2}}/2}}=y\left( c+\cos x \right)$.
C. ${{e}^{{{x}^{2}}}}^{+2}=y\left( c-\cos x \right)$.
D. ${{e}^{-{{x}^{2}}/2}}=y\left( c-\cos x \right)$.
Answer
606.9k+ views
Hint: At first take y as $\dfrac{1}{4}$ and then transform the equation. Also substitute $\dfrac{dy}{dx}$ as $\dfrac{-1}{{{4}^{2}}}\dfrac{dy}{dx}$. Then multiply by ${{4}^{2}}$ throughout the equation and thus further solve the differential equation.
Complete step-by-step answer:
In the question a differential equation is given $\dfrac{dy}{dx}-xy={{y}^{2}}{{e}^{{{x}^{2}}/2}}\sin x$ and we have to find the original equation.
The given differential equation is, $\dfrac{dy}{dx}-xy={{y}^{2}}{{e}^{{{x}^{2}}/2}}\sin x$ .
It is in the form of Bernoulli equation which is represented as,
$\dfrac{dy}{dx}+P\left( x \right)y=Q\left( x \right){{y}^{n}}.$
Where n is the real number but not be 0 or 1 and $P\left( x \right)$ and $Q\left( x \right)$ are referred to as functions of x.
Now to solve it we have substituted ${{y}^{1-n}}$ as 4.
Here the value of n is 2 so, 4 is equal to $\dfrac{1}{y}$ .
So instead of substituting $\dfrac{1}{y}$ as we will substitute y as $\dfrac{1}{4}$ .
So we can write it as,
$\dfrac{dy}{dx}-\dfrac{x}{4}=\dfrac{{{e}^{{{x}^{2}}/2}}}{{{4}^{2}}}$ .
As $y=\dfrac{1}{4}$ so, $\dfrac{dy}{dx}=\dfrac{-1}{{{4}^{2}}}\dfrac{dy}{dx}$ .
So, we will substitute $\dfrac{dy}{dx}$ as $\dfrac{-1}{{{4}^{2}}}\dfrac{dy}{dx}$. In the equation and get, $\dfrac{-1}{{{4}^{2}}}\dfrac{dy}{dx}-\dfrac{-x}{4}=\dfrac{{{e}^{-{{x}^{2}}/2}}\sin x}{{{4}^{2}}}$ .
Now by multiplying by $-{{4}^{2}}$ we get,
$\dfrac{dy}{dx}+4x=-{{e}^{-{{x}^{2}}/2}}\sin x$ .
So, the new equation in terms of 4 , x is,
$\dfrac{dy}{dx}+4x=-{{e}^{-{{x}^{2}}/2}}\sin x$ .
Now to solve the equation we have to multiply by integration factor which is ${{e}^{\int P\left( x \right)dx}}$
Here $P\left( x \right)$ is x and $Q\left( x \right)$ is ${{e}^{-{{x}^{2}}/2}}\sin x$ .
So the integration factor is ${{e}^{\int xdx}}$ or ${{e}^{{{x}^{2}}/2}}$ .
Now we will multiply by ${{e}^{{{x}^{2}}/2}}$ through the equation so we get,
${{e}^{{{x}^{2}}/2}}\dfrac{dy}{dx}+4x{{e}^{{{x}^{2}}/2}}=-{{e}^{-{{x}^{2}}/2}}\sin x-{{e}^{{{x}^{2}}/2}}$ or, ${{e}^{{{x}^{2}}/2}}\dfrac{dy}{dx}+4x{{e}^{{{x}^{2}}/2}}=-\sin x$.
So, we can further rewrite equation as, ${{e}^{{{x}^{2}}/2}}\dfrac{d\left( 4 \right)}{dx}+4.\dfrac{d}{dx}\left( {{e}^{{{x}^{2}}/2}} \right)=-\sin x$ or, $\dfrac{d}{dx}\left( 4.{{e}^{{{x}^{2}}/2}} \right)=-\sin x$
So, we can write it as, $d\left( 4.{{e}^{{{x}^{2}}/2}} \right)=-\sin xdx$.
Now on integrating on both the sides we get, $\int d\left( 4.{{e}^{{{x}^{2}}/2}} \right)=\int -\sin xdx$ .
So, on integrating we get,
$4.{{e}^{{{x}^{2}}/2}}=c+\cos x$ .
Here c is constant of integration.
Now as we took $\dfrac{1}{y}$ as 4 in the beginning so we will write as,
$\dfrac{1}{y}{{e}^{{{x}^{2}}/2}}=c+\cos x$ or, ${{e}^{{{x}^{2}}/2}}=y\left( c+\cos x \right)$ .
Hence the answer is $'A'$.
Note: In the Bernoulli equation used, the value of n cannot be 0 or 1 because when $n=0$ the equation will be solved by first or linear differential equation and if $n=1$ then it will be solved by using separation of variables.
Complete step-by-step answer:
In the question a differential equation is given $\dfrac{dy}{dx}-xy={{y}^{2}}{{e}^{{{x}^{2}}/2}}\sin x$ and we have to find the original equation.
The given differential equation is, $\dfrac{dy}{dx}-xy={{y}^{2}}{{e}^{{{x}^{2}}/2}}\sin x$ .
It is in the form of Bernoulli equation which is represented as,
$\dfrac{dy}{dx}+P\left( x \right)y=Q\left( x \right){{y}^{n}}.$
Where n is the real number but not be 0 or 1 and $P\left( x \right)$ and $Q\left( x \right)$ are referred to as functions of x.
Now to solve it we have substituted ${{y}^{1-n}}$ as 4.
Here the value of n is 2 so, 4 is equal to $\dfrac{1}{y}$ .
So instead of substituting $\dfrac{1}{y}$ as we will substitute y as $\dfrac{1}{4}$ .
So we can write it as,
$\dfrac{dy}{dx}-\dfrac{x}{4}=\dfrac{{{e}^{{{x}^{2}}/2}}}{{{4}^{2}}}$ .
As $y=\dfrac{1}{4}$ so, $\dfrac{dy}{dx}=\dfrac{-1}{{{4}^{2}}}\dfrac{dy}{dx}$ .
So, we will substitute $\dfrac{dy}{dx}$ as $\dfrac{-1}{{{4}^{2}}}\dfrac{dy}{dx}$. In the equation and get, $\dfrac{-1}{{{4}^{2}}}\dfrac{dy}{dx}-\dfrac{-x}{4}=\dfrac{{{e}^{-{{x}^{2}}/2}}\sin x}{{{4}^{2}}}$ .
Now by multiplying by $-{{4}^{2}}$ we get,
$\dfrac{dy}{dx}+4x=-{{e}^{-{{x}^{2}}/2}}\sin x$ .
So, the new equation in terms of 4 , x is,
$\dfrac{dy}{dx}+4x=-{{e}^{-{{x}^{2}}/2}}\sin x$ .
Now to solve the equation we have to multiply by integration factor which is ${{e}^{\int P\left( x \right)dx}}$
Here $P\left( x \right)$ is x and $Q\left( x \right)$ is ${{e}^{-{{x}^{2}}/2}}\sin x$ .
So the integration factor is ${{e}^{\int xdx}}$ or ${{e}^{{{x}^{2}}/2}}$ .
Now we will multiply by ${{e}^{{{x}^{2}}/2}}$ through the equation so we get,
${{e}^{{{x}^{2}}/2}}\dfrac{dy}{dx}+4x{{e}^{{{x}^{2}}/2}}=-{{e}^{-{{x}^{2}}/2}}\sin x-{{e}^{{{x}^{2}}/2}}$ or, ${{e}^{{{x}^{2}}/2}}\dfrac{dy}{dx}+4x{{e}^{{{x}^{2}}/2}}=-\sin x$.
So, we can further rewrite equation as, ${{e}^{{{x}^{2}}/2}}\dfrac{d\left( 4 \right)}{dx}+4.\dfrac{d}{dx}\left( {{e}^{{{x}^{2}}/2}} \right)=-\sin x$ or, $\dfrac{d}{dx}\left( 4.{{e}^{{{x}^{2}}/2}} \right)=-\sin x$
So, we can write it as, $d\left( 4.{{e}^{{{x}^{2}}/2}} \right)=-\sin xdx$.
Now on integrating on both the sides we get, $\int d\left( 4.{{e}^{{{x}^{2}}/2}} \right)=\int -\sin xdx$ .
So, on integrating we get,
$4.{{e}^{{{x}^{2}}/2}}=c+\cos x$ .
Here c is constant of integration.
Now as we took $\dfrac{1}{y}$ as 4 in the beginning so we will write as,
$\dfrac{1}{y}{{e}^{{{x}^{2}}/2}}=c+\cos x$ or, ${{e}^{{{x}^{2}}/2}}=y\left( c+\cos x \right)$ .
Hence the answer is $'A'$.
Note: In the Bernoulli equation used, the value of n cannot be 0 or 1 because when $n=0$ the equation will be solved by first or linear differential equation and if $n=1$ then it will be solved by using separation of variables.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

