
Solve the following equation by matrix method $2x+y+z=1$ , $x-2y-3z=1$ , $3x+2y+4z=5$ .
Answer
575.7k+ views
Hint: Now we are given with three equations $2x+y+z=1$ , $x-2y-3z=1$ , $3x+2y+4z=5$ . We will first write the equation in matrix form. Now first we will calculate the determinant of A. Now we will calculate the cofactor matrix of A. Now we know that adjoin of A is transpose of cofactor matrix of A and inverse of A is given by ${{A}^{-1}}=\dfrac{AdjA}{\det A}$ . Hence we get the inverse matrix of A. Now we know that the solution to the system of linear equations is given by ${{A}^{-1}}B$ . Hence we can easily find the solution by multiplying the matrices
Complete step-by-step answer:
Now we are given with the equations $2x+y+z=1$ , $x-2y-3z=1$ , $3x+2y+4z=5$ .
Let us write the equations in matrix form.
$\left( \begin{matrix}
2 & 1 & 1 \\
1 & -2 & -3 \\
3 & 2 & 4 \\
\end{matrix} \right)\left( \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right)=\left( \begin{matrix}
1 \\
1 \\
5 \\
\end{matrix} \right)$
Now comparing with the form $AX=B$ we get $A=\left( \begin{matrix}
2 & 1 & 1 \\
1 & -2 & -3 \\
3 & 2 & 4 \\
\end{matrix} \right)$ and $B=\left( \begin{matrix}
1 \\
1 \\
5 \\
\end{matrix} \right)$ .
Now first let us find the determinant of A.
Now we have $A=\left( \begin{matrix}
2 & 1 & 1 \\
1 & -2 & -3 \\
3 & 2 & 4 \\
\end{matrix} \right)$
$\begin{align}
& |A|=2\left( -8+6 \right)-1\left( 4+9 \right)+1\left( 2+6 \right) \\
& |A|=-4-13+8 \\
& |A|=-9 \\
\end{align}$
Now since we have determinant is not equal to zero the solution exists.
Now want to find cofactor matrix of A.
Let us calculate cofactor of each element.
${{C}_{11}}={{\left( -1 \right)}^{1+1}}\left| \begin{matrix}
-2 & -3 \\
2 & 4 \\
\end{matrix} \right|=-2$
${{C}_{12}}={{\left( -1 \right)}^{1+2}}\left| \begin{matrix}
1 & -3 \\
3 & 4 \\
\end{matrix}= \right|=-13$
${{C}_{13}}={{\left( -1 \right)}^{1+3}}\left| \begin{matrix}
1 & -2 \\
3 & 2 \\
\end{matrix} \right|=8$
${{C}_{21}}={{\left( -1 \right)}^{2+1}}\left| \begin{matrix}
1 & 1 \\
2 & 4 \\
\end{matrix} \right|=-2$
${{C}_{22}}={{\left( -1 \right)}^{2+2}}\left| \begin{matrix}
2 & 1 \\
3 & 4 \\
\end{matrix} \right|=5$
${{C}_{23}}={{\left( -1 \right)}^{2+3}}\left| \begin{matrix}
2 & 1 \\
3 & 2 \\
\end{matrix} \right|=-1$
${{C}_{31}}={{\left( -1 \right)}^{3+1}}\left| \begin{matrix}
1 & 1 \\
-2 & -3 \\
\end{matrix} \right|=-1$
${{C}_{32}}={{\left( -1 \right)}^{3+2}}\left| \begin{matrix}
2 & 1 \\
1 & -3 \\
\end{matrix} \right|=7$
${{C}_{33}}={{\left( -1 \right)}^{3+3}}\left| \begin{matrix}
2 & 1 \\
1 & -2 \\
\end{matrix} \right|=-5$
Hence the cofactor matrix is given by $C=\left( \begin{matrix}
-2 & -13 & 8 \\
-2 & 5 & -1 \\
-1 & 7 & -5 \\
\end{matrix} \right)$
Now we know that adjoin matrix is transpose of cofactor matrix.
Hence \[AdjA=\left( \begin{matrix}
-2 & -2 & -1 \\
-13 & 5 & 7 \\
8 & -1 & -5 \\
\end{matrix} \right)\]
Now we know that ${{A}^{-1}}=\dfrac{AdjA}{\det A}$
Hence we get,
\[{{A}^{-1}}=\dfrac{1}{-9}\left( \begin{matrix}
-2 & -2 & -1 \\
-13 & 5 & 7 \\
8 & -1 & -5 \\
\end{matrix} \right)\]
Now we know that the solution of linear equation $AX=B$ is given by $X={{A}^{-1}}B$ .
Now let us calculate ${{A}^{-1}}B$
\[\begin{align}
& {{A}^{-1}}B=\dfrac{1}{-9}\left( \begin{matrix}
-2 & -2 & -1 \\
-13 & 5 & 7 \\
8 & -1 & -5 \\
\end{matrix} \right)\left( \begin{matrix}
1 \\
1 \\
5 \\
\end{matrix} \right) \\
& \Rightarrow {{A}^{-1}}B=\dfrac{1}{-9}\left( \begin{matrix}
-2-2-5 \\
-13+5+35 \\
8-1-25 \\
\end{matrix} \right) \\
& \Rightarrow {{A}^{-1}}B=\dfrac{1}{-9}\left( \begin{matrix}
-9 \\
27 \\
-18 \\
\end{matrix} \right) \\
& \Rightarrow {{A}^{-1}}B=\left( \begin{matrix}
1 \\
-3 \\
2 \\
\end{matrix} \right) \\
\end{align}\]
Now we have $X={{A}^{-1}}B$ .
Hence we can say x = 1, y = – 3 and z = 2.
Note: Now there are a number of ways to solve systems of linear equations. We can also write the equation AX = BI where I is an identity matrix and use row and column transformation in a way that A = I. Then we will get the matrix in the form of X = BA’ . Hence we can find the solution to the linear equation.
Complete step-by-step answer:
Now we are given with the equations $2x+y+z=1$ , $x-2y-3z=1$ , $3x+2y+4z=5$ .
Let us write the equations in matrix form.
$\left( \begin{matrix}
2 & 1 & 1 \\
1 & -2 & -3 \\
3 & 2 & 4 \\
\end{matrix} \right)\left( \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right)=\left( \begin{matrix}
1 \\
1 \\
5 \\
\end{matrix} \right)$
Now comparing with the form $AX=B$ we get $A=\left( \begin{matrix}
2 & 1 & 1 \\
1 & -2 & -3 \\
3 & 2 & 4 \\
\end{matrix} \right)$ and $B=\left( \begin{matrix}
1 \\
1 \\
5 \\
\end{matrix} \right)$ .
Now first let us find the determinant of A.
Now we have $A=\left( \begin{matrix}
2 & 1 & 1 \\
1 & -2 & -3 \\
3 & 2 & 4 \\
\end{matrix} \right)$
$\begin{align}
& |A|=2\left( -8+6 \right)-1\left( 4+9 \right)+1\left( 2+6 \right) \\
& |A|=-4-13+8 \\
& |A|=-9 \\
\end{align}$
Now since we have determinant is not equal to zero the solution exists.
Now want to find cofactor matrix of A.
Let us calculate cofactor of each element.
${{C}_{11}}={{\left( -1 \right)}^{1+1}}\left| \begin{matrix}
-2 & -3 \\
2 & 4 \\
\end{matrix} \right|=-2$
${{C}_{12}}={{\left( -1 \right)}^{1+2}}\left| \begin{matrix}
1 & -3 \\
3 & 4 \\
\end{matrix}= \right|=-13$
${{C}_{13}}={{\left( -1 \right)}^{1+3}}\left| \begin{matrix}
1 & -2 \\
3 & 2 \\
\end{matrix} \right|=8$
${{C}_{21}}={{\left( -1 \right)}^{2+1}}\left| \begin{matrix}
1 & 1 \\
2 & 4 \\
\end{matrix} \right|=-2$
${{C}_{22}}={{\left( -1 \right)}^{2+2}}\left| \begin{matrix}
2 & 1 \\
3 & 4 \\
\end{matrix} \right|=5$
${{C}_{23}}={{\left( -1 \right)}^{2+3}}\left| \begin{matrix}
2 & 1 \\
3 & 2 \\
\end{matrix} \right|=-1$
${{C}_{31}}={{\left( -1 \right)}^{3+1}}\left| \begin{matrix}
1 & 1 \\
-2 & -3 \\
\end{matrix} \right|=-1$
${{C}_{32}}={{\left( -1 \right)}^{3+2}}\left| \begin{matrix}
2 & 1 \\
1 & -3 \\
\end{matrix} \right|=7$
${{C}_{33}}={{\left( -1 \right)}^{3+3}}\left| \begin{matrix}
2 & 1 \\
1 & -2 \\
\end{matrix} \right|=-5$
Hence the cofactor matrix is given by $C=\left( \begin{matrix}
-2 & -13 & 8 \\
-2 & 5 & -1 \\
-1 & 7 & -5 \\
\end{matrix} \right)$
Now we know that adjoin matrix is transpose of cofactor matrix.
Hence \[AdjA=\left( \begin{matrix}
-2 & -2 & -1 \\
-13 & 5 & 7 \\
8 & -1 & -5 \\
\end{matrix} \right)\]
Now we know that ${{A}^{-1}}=\dfrac{AdjA}{\det A}$
Hence we get,
\[{{A}^{-1}}=\dfrac{1}{-9}\left( \begin{matrix}
-2 & -2 & -1 \\
-13 & 5 & 7 \\
8 & -1 & -5 \\
\end{matrix} \right)\]
Now we know that the solution of linear equation $AX=B$ is given by $X={{A}^{-1}}B$ .
Now let us calculate ${{A}^{-1}}B$
\[\begin{align}
& {{A}^{-1}}B=\dfrac{1}{-9}\left( \begin{matrix}
-2 & -2 & -1 \\
-13 & 5 & 7 \\
8 & -1 & -5 \\
\end{matrix} \right)\left( \begin{matrix}
1 \\
1 \\
5 \\
\end{matrix} \right) \\
& \Rightarrow {{A}^{-1}}B=\dfrac{1}{-9}\left( \begin{matrix}
-2-2-5 \\
-13+5+35 \\
8-1-25 \\
\end{matrix} \right) \\
& \Rightarrow {{A}^{-1}}B=\dfrac{1}{-9}\left( \begin{matrix}
-9 \\
27 \\
-18 \\
\end{matrix} \right) \\
& \Rightarrow {{A}^{-1}}B=\left( \begin{matrix}
1 \\
-3 \\
2 \\
\end{matrix} \right) \\
\end{align}\]
Now we have $X={{A}^{-1}}B$ .
Hence we can say x = 1, y = – 3 and z = 2.
Note: Now there are a number of ways to solve systems of linear equations. We can also write the equation AX = BI where I is an identity matrix and use row and column transformation in a way that A = I. Then we will get the matrix in the form of X = BA’ . Hence we can find the solution to the linear equation.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

