
Solve the following equation and find the values of m:
$\left( 2{{m}^{3}}+3m \right)\left( 5m-1 \right)=0.$
Answer
602.1k+ views
Hint: To solve the question given above, first we will find the total number of values of m we will get. The total number of values of m will be equal to greater power of m in the equation. Then, we will find all the values of m by factoring the above equation and then equating each factor term to zero.
Complete step-by-step answer:
Before we find the values of m or roots of the equation given above, we will first find out how many roots we will get. The total number of roots will be equal to the highest power of m in the equation $\left( 2{{m}^{3}}+3m \right)\left( 5m-1 \right)=0.$ For this, we will multiply both the terms on the left hand side. Thus we will get:
\[\begin{align}
& \left( 2{{m}^{3}}+3m \right)\left( 5m-1 \right)=0 \\
& \Rightarrow 2{{m}^{3}}\left( 5m-1 \right)+3m\left( 5m-1 \right)=0 \\
& \Rightarrow 10{{m}^{4}}-2{{m}^{3}}+15{{m}^{2}}-3m=0.........\left( 1 \right) \\
\end{align}\]
Here, we can see that the greater power of m is 4 so we will get roots ${{m}_{1}},{{m}_{2}},{{m}_{3}}\text{ }and\text{ }{{m}_{4.}}$ Now, the equation given in question is:
$\left( 2{{m}^{3}}+3m \right)\left( 5m-1 \right)=0.$
Now, we will take m common from the term $\left( 2{{m}^{3}}+3m \right).$Thus we will get: $\left( m \right)\left( 2{{m}^{2}}+3 \right)\left( 5m-1 \right)=0.$
In the above equation, we have the term $\left( 2{{m}^{3}}+3m \right)$ which do not have real factors. The imaginary factors of equation ${{a}^{2}}{{x}^{2}}+{{b}^{2}}$ are $\left( x+\dfrac{i6}{a} \right)\left( x-\dfrac{i6}{a} \right).$ So, after applying these form, we will get: $m\left( m+\dfrac{i\sqrt{3}}{\sqrt{2}} \right)\left( m-\dfrac{i\sqrt{3}}{\sqrt{2}} \right)\left( 5m-1 \right)=0$
Now, to find the values of m, we will equate each factor to zero separately. Thus ${{m}_{1}}$ can be obtained as follows: $\begin{align}
& m=0 \\
& \Rightarrow {{m}_{1}}=0 \\
\end{align}$
Now, to find the value of ${{m}_{2}}$, we will equate the form $\left( m+\dfrac{i\sqrt{3}}{\sqrt{2}} \right)$ to zero. Thus, we get: $\begin{align}
& m+\dfrac{i\sqrt{3}}{\sqrt{2}}=0 \\
& m=-i\sqrt{\dfrac{3}{2}} \\
& \Rightarrow m=-\sqrt{\dfrac{3}{2}}i \\
\end{align}$
To find the value of ${{m}_{3}}$, we will equate the term $\left( m-\dfrac{i\sqrt{3}}{\sqrt{2}} \right)$ to zero. Thus, we get:
$\begin{align}
& m+\dfrac{i\sqrt{3}}{\sqrt{2}}=0 \\
& \Rightarrow m=i\sqrt{\dfrac{3}{2}} \\
& \Rightarrow {{m}_{3}}=\sqrt{\dfrac{3}{2}i} \\
\end{align}$
To find ${{m}_{4}}$, we will do:
$\begin{align}
& 5m-1=0 \\
& m=\dfrac{1}{5}\Rightarrow {{m}_{4}}=\dfrac{1}{5} \\
\end{align}$
Thus the roots of equation $\left( 2{{m}^{3}}+3m \right)\left( 5m-1 \right)=0.$ are
$\begin{align}
& {{m}_{1}}=0 \\
& {{m}_{2}}=-\sqrt{\dfrac{3}{2}i} \\
& {{m}_{3}}=\sqrt{\dfrac{3}{2}i} \\
& {{m}_{4}}=\dfrac{1}{5} \\
\end{align}$
Note: The imaginary roots of the above equation can also be found out with the help of quadratic formula. The quadratic formula is as shown: $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Where x is the root of $a{{x}^{2}}+bx+c=0.$ In our case, the factor which will give imaginary roots is\[\left( 2{{m}^{2}}+3 \right).\] Thus a=2, b=0 and c=3.
$\begin{align}
& \Rightarrow m=\dfrac{-\left( 0 \right)\pm \sqrt{{{\left( 0 \right)}^{2}}-4\left( 2 \right)\left( 3 \right)}}{2\left( 2 \right)} \\
& \Rightarrow m=\dfrac{\pm \sqrt{-4\left( 2 \right)\left( 3 \right)}}{2\left( 2 \right)} \\
& \Rightarrow m=\pm \dfrac{2\sqrt{-\left( 2 \right)\left( 3 \right)}}{2\left( 2 \right)} \\
& \Rightarrow m=\pm \dfrac{\sqrt{\left( 2 \right)\left( 3 \right)i}}{\left( 2 \right)} \\
& \Rightarrow m=\pm \left( \sqrt{\dfrac{3}{2}} \right)i \\
& \Rightarrow m=\sqrt{\dfrac{3}{2}}i\text{ and m=-}\sqrt{\dfrac{3}{2}}i. \\
\end{align}$
Complete step-by-step answer:
Before we find the values of m or roots of the equation given above, we will first find out how many roots we will get. The total number of roots will be equal to the highest power of m in the equation $\left( 2{{m}^{3}}+3m \right)\left( 5m-1 \right)=0.$ For this, we will multiply both the terms on the left hand side. Thus we will get:
\[\begin{align}
& \left( 2{{m}^{3}}+3m \right)\left( 5m-1 \right)=0 \\
& \Rightarrow 2{{m}^{3}}\left( 5m-1 \right)+3m\left( 5m-1 \right)=0 \\
& \Rightarrow 10{{m}^{4}}-2{{m}^{3}}+15{{m}^{2}}-3m=0.........\left( 1 \right) \\
\end{align}\]
Here, we can see that the greater power of m is 4 so we will get roots ${{m}_{1}},{{m}_{2}},{{m}_{3}}\text{ }and\text{ }{{m}_{4.}}$ Now, the equation given in question is:
$\left( 2{{m}^{3}}+3m \right)\left( 5m-1 \right)=0.$
Now, we will take m common from the term $\left( 2{{m}^{3}}+3m \right).$Thus we will get: $\left( m \right)\left( 2{{m}^{2}}+3 \right)\left( 5m-1 \right)=0.$
In the above equation, we have the term $\left( 2{{m}^{3}}+3m \right)$ which do not have real factors. The imaginary factors of equation ${{a}^{2}}{{x}^{2}}+{{b}^{2}}$ are $\left( x+\dfrac{i6}{a} \right)\left( x-\dfrac{i6}{a} \right).$ So, after applying these form, we will get: $m\left( m+\dfrac{i\sqrt{3}}{\sqrt{2}} \right)\left( m-\dfrac{i\sqrt{3}}{\sqrt{2}} \right)\left( 5m-1 \right)=0$
Now, to find the values of m, we will equate each factor to zero separately. Thus ${{m}_{1}}$ can be obtained as follows: $\begin{align}
& m=0 \\
& \Rightarrow {{m}_{1}}=0 \\
\end{align}$
Now, to find the value of ${{m}_{2}}$, we will equate the form $\left( m+\dfrac{i\sqrt{3}}{\sqrt{2}} \right)$ to zero. Thus, we get: $\begin{align}
& m+\dfrac{i\sqrt{3}}{\sqrt{2}}=0 \\
& m=-i\sqrt{\dfrac{3}{2}} \\
& \Rightarrow m=-\sqrt{\dfrac{3}{2}}i \\
\end{align}$
To find the value of ${{m}_{3}}$, we will equate the term $\left( m-\dfrac{i\sqrt{3}}{\sqrt{2}} \right)$ to zero. Thus, we get:
$\begin{align}
& m+\dfrac{i\sqrt{3}}{\sqrt{2}}=0 \\
& \Rightarrow m=i\sqrt{\dfrac{3}{2}} \\
& \Rightarrow {{m}_{3}}=\sqrt{\dfrac{3}{2}i} \\
\end{align}$
To find ${{m}_{4}}$, we will do:
$\begin{align}
& 5m-1=0 \\
& m=\dfrac{1}{5}\Rightarrow {{m}_{4}}=\dfrac{1}{5} \\
\end{align}$
Thus the roots of equation $\left( 2{{m}^{3}}+3m \right)\left( 5m-1 \right)=0.$ are
$\begin{align}
& {{m}_{1}}=0 \\
& {{m}_{2}}=-\sqrt{\dfrac{3}{2}i} \\
& {{m}_{3}}=\sqrt{\dfrac{3}{2}i} \\
& {{m}_{4}}=\dfrac{1}{5} \\
\end{align}$
Note: The imaginary roots of the above equation can also be found out with the help of quadratic formula. The quadratic formula is as shown: $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Where x is the root of $a{{x}^{2}}+bx+c=0.$ In our case, the factor which will give imaginary roots is\[\left( 2{{m}^{2}}+3 \right).\] Thus a=2, b=0 and c=3.
$\begin{align}
& \Rightarrow m=\dfrac{-\left( 0 \right)\pm \sqrt{{{\left( 0 \right)}^{2}}-4\left( 2 \right)\left( 3 \right)}}{2\left( 2 \right)} \\
& \Rightarrow m=\dfrac{\pm \sqrt{-4\left( 2 \right)\left( 3 \right)}}{2\left( 2 \right)} \\
& \Rightarrow m=\pm \dfrac{2\sqrt{-\left( 2 \right)\left( 3 \right)}}{2\left( 2 \right)} \\
& \Rightarrow m=\pm \dfrac{\sqrt{\left( 2 \right)\left( 3 \right)i}}{\left( 2 \right)} \\
& \Rightarrow m=\pm \left( \sqrt{\dfrac{3}{2}} \right)i \\
& \Rightarrow m=\sqrt{\dfrac{3}{2}}i\text{ and m=-}\sqrt{\dfrac{3}{2}}i. \\
\end{align}$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

