
Solve the following differential equation $({\tan ^{ - 1}}y - x)dy = (1 + y)dx$
Answer
586.2k+ views
Hint:
Differential equation is an equation that relates one or more functions and their derivatives. And an integrating factor is a function that is chosen to facilitate the solving of a given equation. The general for of differential equation is
\[\dfrac{{dx}}{{dy}} + P(y)x = Q(y)\]
$I.F = \,{e^{\int {P(y)dy} }}$
Stepwise solution
Given:
$({\tan ^{ - 1}}y - x)dy = (1 + {y^2})dx$
Stepwise solution:
$(1 + {y^2})dx\, = ({\tan ^{ - 1}}y - x)dy$
$ \Rightarrow \dfrac{{dx}}{{dy}} = \dfrac{{{{\tan }^{ - 1}}y}}{{1 + {y^2}}} = \dfrac{x}{{1 + {y^2}}}$
$ \Rightarrow \dfrac{{dx}}{{dy}} + \dfrac{x}{{1 + {y^2}}} = \dfrac{{{{\tan }^{ - 1}}y}}{{1 + {y^2}}}$
Hence,
$I.F = \,{e^{\int {P(y)dy} }}$
\[ = {e^{\int {\dfrac{1}{{1 + {y^2}}}dy} }}\]
$I.\,F = {e^{{{\tan }^{ - 1}}y}}$
Hence, the above differential equation changes to
${e^{{{\tan }^{ - 1}}y}}\dfrac{{dy}}{{dx}} + \,\dfrac{{x{e^{{{\tan }^{ - 1}}y}}}}{{1 + {y^2}}} = \dfrac{{{e^{{{\tan }^{ - 1}}y}}\,{{\tan }^{ - 1}}y}}{{1 + {y^2}}}$
$ \Rightarrow \,{e^{{{\tan }^{ - 1}}y}}\,dx\, + \,\dfrac{{x{e^{{{\tan }^{ - 1}}y}}}}{{1 + {y^2}}}dy = \dfrac{{{e^{{{\tan }^{ - 1}}y}}\,{{\tan }^{ - 1}}y}}{{1 + {y^2}}}dy$
$ \Rightarrow \,d({e^{{{\tan }^{ - 1}}y}}.\,x) = d({e^{{{\tan }^{ - 1}}y}})$
Integration of both the sides will result as
\[ \Rightarrow \,\int {d({e^{{{\tan }^{ - 1}}y}}\,x)} = \int {d({e^{{{\tan }^{ - 1}}y}})} \]
$ \Rightarrow {e^{{{\tan }^{ - 1}}y\,}}x = e{\,^{{{\tan }^{ - 1}}y}} + c$
$ \Rightarrow \,x{e^{{{\tan }^{ - 1}}y}} - \,{e^{{{\tan }^{ - 1}}y}} + c$
Note:
The student must not forget to integrate and always remember to follow the general solution of differential equations.
Differential equation is an equation that relates one or more functions and their derivatives. And an integrating factor is a function that is chosen to facilitate the solving of a given equation. The general for of differential equation is
\[\dfrac{{dx}}{{dy}} + P(y)x = Q(y)\]
$I.F = \,{e^{\int {P(y)dy} }}$
Stepwise solution
Given:
$({\tan ^{ - 1}}y - x)dy = (1 + {y^2})dx$
Stepwise solution:
$(1 + {y^2})dx\, = ({\tan ^{ - 1}}y - x)dy$
$ \Rightarrow \dfrac{{dx}}{{dy}} = \dfrac{{{{\tan }^{ - 1}}y}}{{1 + {y^2}}} = \dfrac{x}{{1 + {y^2}}}$
$ \Rightarrow \dfrac{{dx}}{{dy}} + \dfrac{x}{{1 + {y^2}}} = \dfrac{{{{\tan }^{ - 1}}y}}{{1 + {y^2}}}$
Hence,
$I.F = \,{e^{\int {P(y)dy} }}$
\[ = {e^{\int {\dfrac{1}{{1 + {y^2}}}dy} }}\]
$I.\,F = {e^{{{\tan }^{ - 1}}y}}$
Hence, the above differential equation changes to
${e^{{{\tan }^{ - 1}}y}}\dfrac{{dy}}{{dx}} + \,\dfrac{{x{e^{{{\tan }^{ - 1}}y}}}}{{1 + {y^2}}} = \dfrac{{{e^{{{\tan }^{ - 1}}y}}\,{{\tan }^{ - 1}}y}}{{1 + {y^2}}}$
$ \Rightarrow \,{e^{{{\tan }^{ - 1}}y}}\,dx\, + \,\dfrac{{x{e^{{{\tan }^{ - 1}}y}}}}{{1 + {y^2}}}dy = \dfrac{{{e^{{{\tan }^{ - 1}}y}}\,{{\tan }^{ - 1}}y}}{{1 + {y^2}}}dy$
$ \Rightarrow \,d({e^{{{\tan }^{ - 1}}y}}.\,x) = d({e^{{{\tan }^{ - 1}}y}})$
Integration of both the sides will result as
\[ \Rightarrow \,\int {d({e^{{{\tan }^{ - 1}}y}}\,x)} = \int {d({e^{{{\tan }^{ - 1}}y}})} \]
$ \Rightarrow {e^{{{\tan }^{ - 1}}y\,}}x = e{\,^{{{\tan }^{ - 1}}y}} + c$
$ \Rightarrow \,x{e^{{{\tan }^{ - 1}}y}} - \,{e^{{{\tan }^{ - 1}}y}} + c$
Note:
The student must not forget to integrate and always remember to follow the general solution of differential equations.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

