
Solve the following differential equation $({\tan ^{ - 1}}y - x)dy = (1 + y)dx$
Answer
573k+ views
Hint:
Differential equation is an equation that relates one or more functions and their derivatives. And an integrating factor is a function that is chosen to facilitate the solving of a given equation. The general for of differential equation is
\[\dfrac{{dx}}{{dy}} + P(y)x = Q(y)\]
$I.F = \,{e^{\int {P(y)dy} }}$
Stepwise solution
Given:
$({\tan ^{ - 1}}y - x)dy = (1 + {y^2})dx$
Stepwise solution:
$(1 + {y^2})dx\, = ({\tan ^{ - 1}}y - x)dy$
$ \Rightarrow \dfrac{{dx}}{{dy}} = \dfrac{{{{\tan }^{ - 1}}y}}{{1 + {y^2}}} = \dfrac{x}{{1 + {y^2}}}$
$ \Rightarrow \dfrac{{dx}}{{dy}} + \dfrac{x}{{1 + {y^2}}} = \dfrac{{{{\tan }^{ - 1}}y}}{{1 + {y^2}}}$
Hence,
$I.F = \,{e^{\int {P(y)dy} }}$
\[ = {e^{\int {\dfrac{1}{{1 + {y^2}}}dy} }}\]
$I.\,F = {e^{{{\tan }^{ - 1}}y}}$
Hence, the above differential equation changes to
${e^{{{\tan }^{ - 1}}y}}\dfrac{{dy}}{{dx}} + \,\dfrac{{x{e^{{{\tan }^{ - 1}}y}}}}{{1 + {y^2}}} = \dfrac{{{e^{{{\tan }^{ - 1}}y}}\,{{\tan }^{ - 1}}y}}{{1 + {y^2}}}$
$ \Rightarrow \,{e^{{{\tan }^{ - 1}}y}}\,dx\, + \,\dfrac{{x{e^{{{\tan }^{ - 1}}y}}}}{{1 + {y^2}}}dy = \dfrac{{{e^{{{\tan }^{ - 1}}y}}\,{{\tan }^{ - 1}}y}}{{1 + {y^2}}}dy$
$ \Rightarrow \,d({e^{{{\tan }^{ - 1}}y}}.\,x) = d({e^{{{\tan }^{ - 1}}y}})$
Integration of both the sides will result as
\[ \Rightarrow \,\int {d({e^{{{\tan }^{ - 1}}y}}\,x)} = \int {d({e^{{{\tan }^{ - 1}}y}})} \]
$ \Rightarrow {e^{{{\tan }^{ - 1}}y\,}}x = e{\,^{{{\tan }^{ - 1}}y}} + c$
$ \Rightarrow \,x{e^{{{\tan }^{ - 1}}y}} - \,{e^{{{\tan }^{ - 1}}y}} + c$
Note:
The student must not forget to integrate and always remember to follow the general solution of differential equations.
Differential equation is an equation that relates one or more functions and their derivatives. And an integrating factor is a function that is chosen to facilitate the solving of a given equation. The general for of differential equation is
\[\dfrac{{dx}}{{dy}} + P(y)x = Q(y)\]
$I.F = \,{e^{\int {P(y)dy} }}$
Stepwise solution
Given:
$({\tan ^{ - 1}}y - x)dy = (1 + {y^2})dx$
Stepwise solution:
$(1 + {y^2})dx\, = ({\tan ^{ - 1}}y - x)dy$
$ \Rightarrow \dfrac{{dx}}{{dy}} = \dfrac{{{{\tan }^{ - 1}}y}}{{1 + {y^2}}} = \dfrac{x}{{1 + {y^2}}}$
$ \Rightarrow \dfrac{{dx}}{{dy}} + \dfrac{x}{{1 + {y^2}}} = \dfrac{{{{\tan }^{ - 1}}y}}{{1 + {y^2}}}$
Hence,
$I.F = \,{e^{\int {P(y)dy} }}$
\[ = {e^{\int {\dfrac{1}{{1 + {y^2}}}dy} }}\]
$I.\,F = {e^{{{\tan }^{ - 1}}y}}$
Hence, the above differential equation changes to
${e^{{{\tan }^{ - 1}}y}}\dfrac{{dy}}{{dx}} + \,\dfrac{{x{e^{{{\tan }^{ - 1}}y}}}}{{1 + {y^2}}} = \dfrac{{{e^{{{\tan }^{ - 1}}y}}\,{{\tan }^{ - 1}}y}}{{1 + {y^2}}}$
$ \Rightarrow \,{e^{{{\tan }^{ - 1}}y}}\,dx\, + \,\dfrac{{x{e^{{{\tan }^{ - 1}}y}}}}{{1 + {y^2}}}dy = \dfrac{{{e^{{{\tan }^{ - 1}}y}}\,{{\tan }^{ - 1}}y}}{{1 + {y^2}}}dy$
$ \Rightarrow \,d({e^{{{\tan }^{ - 1}}y}}.\,x) = d({e^{{{\tan }^{ - 1}}y}})$
Integration of both the sides will result as
\[ \Rightarrow \,\int {d({e^{{{\tan }^{ - 1}}y}}\,x)} = \int {d({e^{{{\tan }^{ - 1}}y}})} \]
$ \Rightarrow {e^{{{\tan }^{ - 1}}y\,}}x = e{\,^{{{\tan }^{ - 1}}y}} + c$
$ \Rightarrow \,x{e^{{{\tan }^{ - 1}}y}} - \,{e^{{{\tan }^{ - 1}}y}} + c$
Note:
The student must not forget to integrate and always remember to follow the general solution of differential equations.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

