
Solve the following:
$ \dfrac{d}{{dx}}[{\tan ^{ - 1}}\dfrac{{(a - x)}}{{(1 + ax)}}] = $ ?
$ A)\dfrac{1}{{1 + x{}^2}} $
$ B)\dfrac{{ - 1}}{{1 + x{}^2}} $
$ C)\dfrac{a}{{1 + x{}^2}} $
$ D) $ None of these
Answer
493.2k+ views
Hint: First, we need to analyze the given information which is in the trigonometric form.
Here we are asked to calculate the differentiation of $ {\tan ^{ - 1}}\dfrac{{(a - x)}}{{(1 + ax)}} $ , so we need to know the formulas in $ \tan $ (tangent) also.
In differentiation, the derivative of $ x $ raised to the power is denoted by $ \dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} $ .
Formula used:
$ \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} $ and $ \tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}} $
$ \dfrac{d}{{dx}}({\tan ^{ - 1}}x) = \dfrac{1}{{1 + {x^2}}} $
$ {\tan ^{ - 1}}(\tan ) = 1 $ (Which is the inverse function of original function gets one)
Complete step by step answer:
Since from the given that, we have $ \dfrac{d}{{dx}}[{\tan ^{ - 1}}\dfrac{{(a - x)}}{{(1 + ax)}}] $
Let us take the function tangent into the form of $ y = [{\tan ^{ - 1}}\dfrac{{(a - x)}}{{(1 + ax)}}] $
Now assume $ a = \tan \alpha ,x = \tan \theta $ then substitute the values into the above equation we get, $ y = [{\tan ^{ - 1}}\dfrac{{(a - x)}}{{(1 + ax)}}] \Rightarrow [{\tan ^{ - 1}}\dfrac{{(\tan \alpha - \tan \theta )}}{{(1 + \tan \alpha .\tan \theta )}}] $
Now from the tangent formula, we know that, $ \tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}} $ and substituting this in the above equation we get,
$ y = [{\tan ^{ - 1}}\dfrac{{(\tan \alpha - \tan \theta )}}{{(1 + \tan \alpha .\tan \theta )}}] \Rightarrow {\tan ^{ - 1}}[\tan (\alpha - \theta )] $ where $ \tan (\alpha - \theta ) = \dfrac{{\tan \alpha - \tan \theta }}{{1 + \tan \alpha \tan \theta }} $
Again, from the given formula we know that, $ {\tan ^{ - 1}}(\tan ) = 1 $
Substituting these value into the above equation we get, $ y = {\tan ^{ - 1}}[\tan (\alpha - \theta )] \Rightarrow (\alpha - \theta ) $
So, we converted the original given form of a tangent as $ y = (\alpha - \theta ) $
But since in the beginning, we assumed that $ a = \tan \alpha ,x = \tan \theta $ and this can be rewritten as $ a = \tan \alpha ,x = \tan \theta \Rightarrow \alpha = {\tan ^{ - 1}}a,\theta = {\tan ^{ - 1}}x $ (where these functions are the inverse image to the given functions)
Now substitute the converted values $ \alpha = {\tan ^{ - 1}}a,\theta = {\tan ^{ - 1}}x $ in the above values $ y = (\alpha - \theta ) $ then we get, $ y = (\alpha - \theta ) \Rightarrow {\tan ^{ - 1}}a - {\tan ^{ - 1}}x $
Finally, we will take the differentiation with respect to x (which is the requirement)
Thus, we get, $ \dfrac{{d(y)}}{{dx}} = \dfrac{d}{{dx}}({\tan ^{ - 1}}a - {\tan ^{ - 1}}x) $
Now giving the derivative inside the tangent function we get, $ \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\tan ^{ - 1}}a - \dfrac{d}{{dx}}{\tan ^{ - 1}}x $
Since we know that from the formula of a tangent, $ \dfrac{d}{{dx}}({\tan ^{ - 1}}x) = \dfrac{1}{{1 + {x^2}}} $ (with respect to x) and $ \dfrac{d}{{dx}}{\tan ^{ - 1}}a = 0 $ (because this is a constant function, the function is in with constant value $ a $ so if we differentiate the constant, we only get zero)
Hence substitute both values of $ \dfrac{d}{{dx}}({\tan ^{ - 1}}x) = \dfrac{1}{{1 + {x^2}}} $ and $ \dfrac{d}{{dx}}{\tan ^{ - 1}}a = 0 $ in $ \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\tan ^{ - 1}}a - \dfrac{d}{{dx}}{\tan ^{ - 1}}x $ .
Thus, we get, $ \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\tan ^{ - 1}}a - \dfrac{d}{{dx}}{\tan ^{ - 1}}x \Rightarrow 0 - \dfrac{1}{{1 + {x^2}}} $
Therefore, finally, we get $ \dfrac{{dy}}{{dx}} = 0 - \dfrac{1}{{1 + {x^2}}} \Rightarrow - \dfrac{1}{{1 + {x^2}}} $
So, the correct answer is “Option B”.
Note:
Since if we substitute the wrong formula for the tangent, that is $ \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} $ then there is the possibility to get the option as $ A)\dfrac{1}{{1 + x{}^2}} $ but which is the completely wrong answer. So be careful at the tangent formula which is in the solution we only required $ y = {\tan ^{ - 1}}\dfrac{{(\tan \alpha - \tan \theta )}}{{(1 + \tan \alpha .\tan \theta )}} $ and in the numerator, it is a negative sign so we need to apply the formula as $ \tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}} $
Here we are asked to calculate the differentiation of $ {\tan ^{ - 1}}\dfrac{{(a - x)}}{{(1 + ax)}} $ , so we need to know the formulas in $ \tan $ (tangent) also.
In differentiation, the derivative of $ x $ raised to the power is denoted by $ \dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} $ .
Formula used:
$ \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} $ and $ \tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}} $
$ \dfrac{d}{{dx}}({\tan ^{ - 1}}x) = \dfrac{1}{{1 + {x^2}}} $
$ {\tan ^{ - 1}}(\tan ) = 1 $ (Which is the inverse function of original function gets one)
Complete step by step answer:
Since from the given that, we have $ \dfrac{d}{{dx}}[{\tan ^{ - 1}}\dfrac{{(a - x)}}{{(1 + ax)}}] $
Let us take the function tangent into the form of $ y = [{\tan ^{ - 1}}\dfrac{{(a - x)}}{{(1 + ax)}}] $
Now assume $ a = \tan \alpha ,x = \tan \theta $ then substitute the values into the above equation we get, $ y = [{\tan ^{ - 1}}\dfrac{{(a - x)}}{{(1 + ax)}}] \Rightarrow [{\tan ^{ - 1}}\dfrac{{(\tan \alpha - \tan \theta )}}{{(1 + \tan \alpha .\tan \theta )}}] $
Now from the tangent formula, we know that, $ \tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}} $ and substituting this in the above equation we get,
$ y = [{\tan ^{ - 1}}\dfrac{{(\tan \alpha - \tan \theta )}}{{(1 + \tan \alpha .\tan \theta )}}] \Rightarrow {\tan ^{ - 1}}[\tan (\alpha - \theta )] $ where $ \tan (\alpha - \theta ) = \dfrac{{\tan \alpha - \tan \theta }}{{1 + \tan \alpha \tan \theta }} $
Again, from the given formula we know that, $ {\tan ^{ - 1}}(\tan ) = 1 $
Substituting these value into the above equation we get, $ y = {\tan ^{ - 1}}[\tan (\alpha - \theta )] \Rightarrow (\alpha - \theta ) $
So, we converted the original given form of a tangent as $ y = (\alpha - \theta ) $
But since in the beginning, we assumed that $ a = \tan \alpha ,x = \tan \theta $ and this can be rewritten as $ a = \tan \alpha ,x = \tan \theta \Rightarrow \alpha = {\tan ^{ - 1}}a,\theta = {\tan ^{ - 1}}x $ (where these functions are the inverse image to the given functions)
Now substitute the converted values $ \alpha = {\tan ^{ - 1}}a,\theta = {\tan ^{ - 1}}x $ in the above values $ y = (\alpha - \theta ) $ then we get, $ y = (\alpha - \theta ) \Rightarrow {\tan ^{ - 1}}a - {\tan ^{ - 1}}x $
Finally, we will take the differentiation with respect to x (which is the requirement)
Thus, we get, $ \dfrac{{d(y)}}{{dx}} = \dfrac{d}{{dx}}({\tan ^{ - 1}}a - {\tan ^{ - 1}}x) $
Now giving the derivative inside the tangent function we get, $ \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\tan ^{ - 1}}a - \dfrac{d}{{dx}}{\tan ^{ - 1}}x $
Since we know that from the formula of a tangent, $ \dfrac{d}{{dx}}({\tan ^{ - 1}}x) = \dfrac{1}{{1 + {x^2}}} $ (with respect to x) and $ \dfrac{d}{{dx}}{\tan ^{ - 1}}a = 0 $ (because this is a constant function, the function is in with constant value $ a $ so if we differentiate the constant, we only get zero)
Hence substitute both values of $ \dfrac{d}{{dx}}({\tan ^{ - 1}}x) = \dfrac{1}{{1 + {x^2}}} $ and $ \dfrac{d}{{dx}}{\tan ^{ - 1}}a = 0 $ in $ \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\tan ^{ - 1}}a - \dfrac{d}{{dx}}{\tan ^{ - 1}}x $ .
Thus, we get, $ \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\tan ^{ - 1}}a - \dfrac{d}{{dx}}{\tan ^{ - 1}}x \Rightarrow 0 - \dfrac{1}{{1 + {x^2}}} $
Therefore, finally, we get $ \dfrac{{dy}}{{dx}} = 0 - \dfrac{1}{{1 + {x^2}}} \Rightarrow - \dfrac{1}{{1 + {x^2}}} $
So, the correct answer is “Option B”.
Note:
Since if we substitute the wrong formula for the tangent, that is $ \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} $ then there is the possibility to get the option as $ A)\dfrac{1}{{1 + x{}^2}} $ but which is the completely wrong answer. So be careful at the tangent formula which is in the solution we only required $ y = {\tan ^{ - 1}}\dfrac{{(\tan \alpha - \tan \theta )}}{{(1 + \tan \alpha .\tan \theta )}} $ and in the numerator, it is a negative sign so we need to apply the formula as $ \tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}} $
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

