
How do you solve the expression ${4^x} \cdot {5^{4x + 3}} = {10^{2x + 3}}$?
Answer
529.8k+ views
Hint: We are given an exponential expression. We have to determine the value of x. First, apply the logarithm on both sides of the equation. Then, apply the logarithmic product property on the left-hand side of the expression. Then, apply the power property of logarithms to both sides of the equation. Then, isolate the variable terms and other terms on each side of the equation. Then, take the common factor out from the left-hand side of the equation. Then, simplify the expression and solve for x.
Complete step-by-step solution:
Given an equation, ${4^x} \cdot {5^{4x + 3}} = {10^{2x + 3}}$.
Now, we will start by taking logs on both sides of the equation.
$ \Rightarrow \log \left( {{4^x} \cdot {5^{4x + 3}}} \right) = \log \left( {{{10}^{2x + 3}}} \right)$
Now, we will apply the product rule of logarithms ${\log _a}\left( {bc} \right) = {\log _a}\left( b \right) + {\log _a}\left( c \right)$ to the left hand side of the equation.
$ \Rightarrow \log \left( {{4^x}} \right) + \log \left( {{5^{4x + 3}}} \right) = \log \left( {{{10}^{2x + 3}}} \right)$
Now, we will apply the power rule of logarithms ${\log _a}\left( {{b^c}} \right) = c {\log _a}\left( b \right)$ to both sides of the equation.
$ \Rightarrow x\log \left( 4 \right) + \left( {4x + 3} \right)\log \left( 5 \right) = \left( {2x + 3} \right)\log \left( {10} \right)$
Now, we will apply the distributive property at both sides of the equation.
$ \Rightarrow x\log \left( 4 \right) + 4x\log \left( 5 \right) + 3\log \left( 5 \right) = 2x\log \left( {10} \right) + 3\log \left( {10} \right)$
Move all variable terms on the left hand side of the equation and without variables on the right hand side of the equation.
$ \Rightarrow x\log \left( 4 \right) + 4x\log \left( 5 \right) - 2x\log \left( {10} \right) = 3\log \left( {10} \right) - 3\log \left( 5 \right)$
Now, factor out x from the left hand side of the equation.
$ \Rightarrow x\left[ {\log \left( 4 \right) + 4\log \left( 5 \right) - 2\log \left( {10} \right)} \right] = 3\log \left( {10} \right) - 3\log \left( 5 \right)$
Now, solve for x.
$ \Rightarrow x = \dfrac{{3\log \left( {10} \right) - 3\log \left( 5 \right)}}{{\log \left( 4 \right) + 4\log \left( 5 \right) - 2\log \left( {10} \right)}}$
Now, we will substitute $\log \left( {10} \right) = 1$, $\log \left( 5 \right) = 0.698$ and $\log \left( 4 \right) = 0.602$ into the expression.
$ \Rightarrow x = \dfrac{{3 \times 1 - 3 \times 0.698}}{{0.602 + 4 \times 0.698 - 2 \times 1}}$
On simplifying the expression, we get:
$ \Rightarrow x = \dfrac{{3 - 2.094}}{{0.602 + 2.792 - 2}}$
On further simplifying the expression, we get:
$ \Rightarrow x = \dfrac{{0.906}}{{1.394}}$
$ \Rightarrow x \approx 0.65$
Hence the value of x for the expression ${4^x} \cdot {5^{4x + 3}} = {10^{2x + 3}}$ is approximately $0.65$.
Note: The students must note that in such types of questions various logarithmic properties are applied. The logarithmic properties are as follows:
The product rule of logarithms
$ \Rightarrow {\log _a}\left( {bc} \right) = {\log _a}\left( b \right) + {\log _a}\left( c \right)$
The quotient rule of logarithms
$ \Rightarrow {\log _a}\left( {\dfrac{b}{c}} \right) = {\log _a}\left( b \right) - {\log _a}\left( c \right)$
The power rule of logarithms
$ \Rightarrow {\log _a}\left( {{b^c}} \right) = c{\log _a}\left( b \right)$
The zero exponent rule of logarithms
$ \Rightarrow {\log _a}\left( 1 \right) = 0$
There is an alternative way to solve the problem which is to simplify the given expression where we make the bases both side same and then use the exponent property.
Complete step-by-step solution:
Given an equation, ${4^x} \cdot {5^{4x + 3}} = {10^{2x + 3}}$.
Now, we will start by taking logs on both sides of the equation.
$ \Rightarrow \log \left( {{4^x} \cdot {5^{4x + 3}}} \right) = \log \left( {{{10}^{2x + 3}}} \right)$
Now, we will apply the product rule of logarithms ${\log _a}\left( {bc} \right) = {\log _a}\left( b \right) + {\log _a}\left( c \right)$ to the left hand side of the equation.
$ \Rightarrow \log \left( {{4^x}} \right) + \log \left( {{5^{4x + 3}}} \right) = \log \left( {{{10}^{2x + 3}}} \right)$
Now, we will apply the power rule of logarithms ${\log _a}\left( {{b^c}} \right) = c {\log _a}\left( b \right)$ to both sides of the equation.
$ \Rightarrow x\log \left( 4 \right) + \left( {4x + 3} \right)\log \left( 5 \right) = \left( {2x + 3} \right)\log \left( {10} \right)$
Now, we will apply the distributive property at both sides of the equation.
$ \Rightarrow x\log \left( 4 \right) + 4x\log \left( 5 \right) + 3\log \left( 5 \right) = 2x\log \left( {10} \right) + 3\log \left( {10} \right)$
Move all variable terms on the left hand side of the equation and without variables on the right hand side of the equation.
$ \Rightarrow x\log \left( 4 \right) + 4x\log \left( 5 \right) - 2x\log \left( {10} \right) = 3\log \left( {10} \right) - 3\log \left( 5 \right)$
Now, factor out x from the left hand side of the equation.
$ \Rightarrow x\left[ {\log \left( 4 \right) + 4\log \left( 5 \right) - 2\log \left( {10} \right)} \right] = 3\log \left( {10} \right) - 3\log \left( 5 \right)$
Now, solve for x.
$ \Rightarrow x = \dfrac{{3\log \left( {10} \right) - 3\log \left( 5 \right)}}{{\log \left( 4 \right) + 4\log \left( 5 \right) - 2\log \left( {10} \right)}}$
Now, we will substitute $\log \left( {10} \right) = 1$, $\log \left( 5 \right) = 0.698$ and $\log \left( 4 \right) = 0.602$ into the expression.
$ \Rightarrow x = \dfrac{{3 \times 1 - 3 \times 0.698}}{{0.602 + 4 \times 0.698 - 2 \times 1}}$
On simplifying the expression, we get:
$ \Rightarrow x = \dfrac{{3 - 2.094}}{{0.602 + 2.792 - 2}}$
On further simplifying the expression, we get:
$ \Rightarrow x = \dfrac{{0.906}}{{1.394}}$
$ \Rightarrow x \approx 0.65$
Hence the value of x for the expression ${4^x} \cdot {5^{4x + 3}} = {10^{2x + 3}}$ is approximately $0.65$.
Note: The students must note that in such types of questions various logarithmic properties are applied. The logarithmic properties are as follows:
The product rule of logarithms
$ \Rightarrow {\log _a}\left( {bc} \right) = {\log _a}\left( b \right) + {\log _a}\left( c \right)$
The quotient rule of logarithms
$ \Rightarrow {\log _a}\left( {\dfrac{b}{c}} \right) = {\log _a}\left( b \right) - {\log _a}\left( c \right)$
The power rule of logarithms
$ \Rightarrow {\log _a}\left( {{b^c}} \right) = c{\log _a}\left( b \right)$
The zero exponent rule of logarithms
$ \Rightarrow {\log _a}\left( 1 \right) = 0$
There is an alternative way to solve the problem which is to simplify the given expression where we make the bases both side same and then use the exponent property.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which one of the following groups comprises states class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

A couple went for a picnic They have 5 sons and each class 8 maths CBSE

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


