
Solve the equation \[40{x^4} - 22{x^3} - 21{x^2} + 2x + 1 = 0\], the roots of which are in harmonic progression.
Answer
609k+ views
Hint: In the given question the roots of the equation are in harmonic progression (H.P.). So, take the roots as \[\dfrac{1}{{a - 3d}},\dfrac{1}{{a - d}},\dfrac{1}{{a + d}}{\text{ and }}\dfrac{1}{{a + 3d}}\]. Use this concept to reach the solution of the problem.
Complete step-by-step answer:
Given equation is \[40{x^4} - 22{x^3} - 21{x^2} + 2x + 1 = 0\]
Let the roots of this equation are \[\dfrac{1}{{a - 3d}},\dfrac{1}{{a - d}},\dfrac{1}{{a + d}}{\text{ and }}\dfrac{1}{{a + 3d}}\].
Transforming the equation by replacing \[x\] with \[\dfrac{1}{x}\].
\[
\Rightarrow 40{\left( {\dfrac{1}{x}} \right)^4} - 22{\left( {\dfrac{1}{x}} \right)^3} - 21{\left( {\dfrac{1}{x}} \right)^2} + 2\left( {\dfrac{1}{x}} \right) + 1 = 0 \\
\Rightarrow \dfrac{{40}}{{{x^4}}} - \dfrac{{22}}{{{x^3}}} - \dfrac{{21}}{{{x^2}}} + \dfrac{2}{x} + 1 = 0 \\
\Rightarrow \dfrac{{40 - 22x - 21{x^2} + 2{x^3} + {x^4}}}{{{x^4}}} = 0 \\
\Rightarrow {x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0 \\
\]
Hence the transformed equation is \[{x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0\] and the roots are transformed into \[a - 3d,a - d,a + d{\text{ and a + 3d}}\].
We know that for the equation \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\], the sum of the roots \[{S_1} = - \dfrac{b}{a}\] and the sum of the roots taken two at a time is \[{S_2} = \dfrac{c}{a}\].
So, by using the above formula for the equation \[{x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0\] we have
Sum of the roots \[{S_1} = - \dfrac{b}{a} = - \dfrac{2}{1}\]
\[
\Rightarrow {S_1} = (a - 3d) + (a - d) + (a + d) + \left( {a + 3d} \right) = - \dfrac{2}{1} \\
\Rightarrow {S_1} = 4a = - 2 \\
\Rightarrow 4a = - 2 \\
\therefore a = - \dfrac{1}{2} \\
\]
Sum of the roots taken two at a time \[{S_2} = \dfrac{c}{a} = \dfrac{{ - 21}}{1} = - 21\]
\[
\Rightarrow {S_2} = (a - 3d)(a - d) + (a - 3d)\left( {a + d} \right) + \left( {a - 3d} \right)\left( {a + 3d} \right) + \left( {a - d} \right)\left( {a + d} \right) + \left( {a - d} \right)\left( {a + 3d} \right) + \left( {a + d} \right)\left( {a + 3d} \right) = - 21 \\
\Rightarrow {S_2} = {a^2} - 4d + 3{d^2} + {a^2} - 2d - 3{d^2} + {a^2} - 9{d^2} + {a^2} - {d^2} + {a^2} + 2d - 3{d^2} + {a^2} + 4d + 3{d^2} = - 21 \\
\Rightarrow {S_2} = 6{a^2} - 10{d^2} = - 21 \\
\]
Since, \[a = - \dfrac{1}{2}\]
\[
{S_2} = 6{\left( { - \dfrac{1}{2}} \right)^2} - 10{d^2} = - 21 \\
10{d^2} = 6\left( {\dfrac{1}{4}} \right) + 21 \\
10{d^2} = \dfrac{{6 + 84}}{4} \\
{d^2} = \dfrac{{90}}{4} \times \dfrac{1}{{10}} \\
{d^2} = \dfrac{{90}}{{40}} = \dfrac{9}{4} \\
\therefore d = \dfrac{3}{2} \\
\]
So, the roots are
\[
\Rightarrow \dfrac{1}{{a - 3d}} = \dfrac{1}{{ - \dfrac{1}{2} - 3\left( {\dfrac{3}{2}} \right)}} = \dfrac{1}{{ - \dfrac{{(1 + 9)}}{2}}} = \dfrac{1}{{ - \dfrac{{10}}{2}}} = - \dfrac{1}{5} \\
\Rightarrow \dfrac{1}{{a - d}} = \dfrac{1}{{ - \dfrac{1}{2} - \dfrac{3}{2}}} = \dfrac{1}{{ - \dfrac{4}{2}}} = - \dfrac{1}{2} \\
\Rightarrow \dfrac{1}{{a + d}} = \dfrac{1}{{ - \dfrac{1}{2} + \dfrac{3}{2}}} = \dfrac{2}{2} = 1 \\
\Rightarrow \dfrac{1}{{a + 3d}} = \dfrac{1}{{ - \dfrac{1}{2} + 3\left( {\dfrac{3}{2}} \right)}} = \dfrac{1}{{\dfrac{{( - 1 + 9)}}{2}}} = \dfrac{2}{8} = \dfrac{1}{4} \\
\]
Hence the roots of the equation \[40{x^4} - 22{x^3} - 21{x^2} + 2x + 1 = 0\] are \[ - \dfrac{1}{5}, - \dfrac{1}{2},1{\text{ and }}\dfrac{1}{4}\]
Note: The given equation is bi-quadratic equation. Hence the equation has 4 roots. Whenever the equation is transformed, the roots of that equation will also be transformed accordingly.
Complete step-by-step answer:
Given equation is \[40{x^4} - 22{x^3} - 21{x^2} + 2x + 1 = 0\]
Let the roots of this equation are \[\dfrac{1}{{a - 3d}},\dfrac{1}{{a - d}},\dfrac{1}{{a + d}}{\text{ and }}\dfrac{1}{{a + 3d}}\].
Transforming the equation by replacing \[x\] with \[\dfrac{1}{x}\].
\[
\Rightarrow 40{\left( {\dfrac{1}{x}} \right)^4} - 22{\left( {\dfrac{1}{x}} \right)^3} - 21{\left( {\dfrac{1}{x}} \right)^2} + 2\left( {\dfrac{1}{x}} \right) + 1 = 0 \\
\Rightarrow \dfrac{{40}}{{{x^4}}} - \dfrac{{22}}{{{x^3}}} - \dfrac{{21}}{{{x^2}}} + \dfrac{2}{x} + 1 = 0 \\
\Rightarrow \dfrac{{40 - 22x - 21{x^2} + 2{x^3} + {x^4}}}{{{x^4}}} = 0 \\
\Rightarrow {x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0 \\
\]
Hence the transformed equation is \[{x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0\] and the roots are transformed into \[a - 3d,a - d,a + d{\text{ and a + 3d}}\].
We know that for the equation \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\], the sum of the roots \[{S_1} = - \dfrac{b}{a}\] and the sum of the roots taken two at a time is \[{S_2} = \dfrac{c}{a}\].
So, by using the above formula for the equation \[{x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0\] we have
Sum of the roots \[{S_1} = - \dfrac{b}{a} = - \dfrac{2}{1}\]
\[
\Rightarrow {S_1} = (a - 3d) + (a - d) + (a + d) + \left( {a + 3d} \right) = - \dfrac{2}{1} \\
\Rightarrow {S_1} = 4a = - 2 \\
\Rightarrow 4a = - 2 \\
\therefore a = - \dfrac{1}{2} \\
\]
Sum of the roots taken two at a time \[{S_2} = \dfrac{c}{a} = \dfrac{{ - 21}}{1} = - 21\]
\[
\Rightarrow {S_2} = (a - 3d)(a - d) + (a - 3d)\left( {a + d} \right) + \left( {a - 3d} \right)\left( {a + 3d} \right) + \left( {a - d} \right)\left( {a + d} \right) + \left( {a - d} \right)\left( {a + 3d} \right) + \left( {a + d} \right)\left( {a + 3d} \right) = - 21 \\
\Rightarrow {S_2} = {a^2} - 4d + 3{d^2} + {a^2} - 2d - 3{d^2} + {a^2} - 9{d^2} + {a^2} - {d^2} + {a^2} + 2d - 3{d^2} + {a^2} + 4d + 3{d^2} = - 21 \\
\Rightarrow {S_2} = 6{a^2} - 10{d^2} = - 21 \\
\]
Since, \[a = - \dfrac{1}{2}\]
\[
{S_2} = 6{\left( { - \dfrac{1}{2}} \right)^2} - 10{d^2} = - 21 \\
10{d^2} = 6\left( {\dfrac{1}{4}} \right) + 21 \\
10{d^2} = \dfrac{{6 + 84}}{4} \\
{d^2} = \dfrac{{90}}{4} \times \dfrac{1}{{10}} \\
{d^2} = \dfrac{{90}}{{40}} = \dfrac{9}{4} \\
\therefore d = \dfrac{3}{2} \\
\]
So, the roots are
\[
\Rightarrow \dfrac{1}{{a - 3d}} = \dfrac{1}{{ - \dfrac{1}{2} - 3\left( {\dfrac{3}{2}} \right)}} = \dfrac{1}{{ - \dfrac{{(1 + 9)}}{2}}} = \dfrac{1}{{ - \dfrac{{10}}{2}}} = - \dfrac{1}{5} \\
\Rightarrow \dfrac{1}{{a - d}} = \dfrac{1}{{ - \dfrac{1}{2} - \dfrac{3}{2}}} = \dfrac{1}{{ - \dfrac{4}{2}}} = - \dfrac{1}{2} \\
\Rightarrow \dfrac{1}{{a + d}} = \dfrac{1}{{ - \dfrac{1}{2} + \dfrac{3}{2}}} = \dfrac{2}{2} = 1 \\
\Rightarrow \dfrac{1}{{a + 3d}} = \dfrac{1}{{ - \dfrac{1}{2} + 3\left( {\dfrac{3}{2}} \right)}} = \dfrac{1}{{\dfrac{{( - 1 + 9)}}{2}}} = \dfrac{2}{8} = \dfrac{1}{4} \\
\]
Hence the roots of the equation \[40{x^4} - 22{x^3} - 21{x^2} + 2x + 1 = 0\] are \[ - \dfrac{1}{5}, - \dfrac{1}{2},1{\text{ and }}\dfrac{1}{4}\]
Note: The given equation is bi-quadratic equation. Hence the equation has 4 roots. Whenever the equation is transformed, the roots of that equation will also be transformed accordingly.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

