# Solve the equation \[40{x^4} - 22{x^3} - 21{x^2} + 2x + 1 = 0\], the roots of which are in harmonic progression.

Last updated date: 26th Mar 2023

•

Total views: 306.3k

•

Views today: 2.83k

Answer

Verified

306.3k+ views

Hint: In the given question the roots of the equation are in harmonic progression (H.P.). So, take the roots as \[\dfrac{1}{{a - 3d}},\dfrac{1}{{a - d}},\dfrac{1}{{a + d}}{\text{ and }}\dfrac{1}{{a + 3d}}\]. Use this concept to reach the solution of the problem.

Complete step-by-step answer:

Given equation is \[40{x^4} - 22{x^3} - 21{x^2} + 2x + 1 = 0\]

Let the roots of this equation are \[\dfrac{1}{{a - 3d}},\dfrac{1}{{a - d}},\dfrac{1}{{a + d}}{\text{ and }}\dfrac{1}{{a + 3d}}\].

Transforming the equation by replacing \[x\] with \[\dfrac{1}{x}\].

\[

\Rightarrow 40{\left( {\dfrac{1}{x}} \right)^4} - 22{\left( {\dfrac{1}{x}} \right)^3} - 21{\left( {\dfrac{1}{x}} \right)^2} + 2\left( {\dfrac{1}{x}} \right) + 1 = 0 \\

\Rightarrow \dfrac{{40}}{{{x^4}}} - \dfrac{{22}}{{{x^3}}} - \dfrac{{21}}{{{x^2}}} + \dfrac{2}{x} + 1 = 0 \\

\Rightarrow \dfrac{{40 - 22x - 21{x^2} + 2{x^3} + {x^4}}}{{{x^4}}} = 0 \\

\Rightarrow {x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0 \\

\]

Hence the transformed equation is \[{x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0\] and the roots are transformed into \[a - 3d,a - d,a + d{\text{ and a + 3d}}\].

We know that for the equation \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\], the sum of the roots \[{S_1} = - \dfrac{b}{a}\] and the sum of the roots taken two at a time is \[{S_2} = \dfrac{c}{a}\].

So, by using the above formula for the equation \[{x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0\] we have

Sum of the roots \[{S_1} = - \dfrac{b}{a} = - \dfrac{2}{1}\]

\[

\Rightarrow {S_1} = (a - 3d) + (a - d) + (a + d) + \left( {a + 3d} \right) = - \dfrac{2}{1} \\

\Rightarrow {S_1} = 4a = - 2 \\

\Rightarrow 4a = - 2 \\

\therefore a = - \dfrac{1}{2} \\

\]

Sum of the roots taken two at a time \[{S_2} = \dfrac{c}{a} = \dfrac{{ - 21}}{1} = - 21\]

\[

\Rightarrow {S_2} = (a - 3d)(a - d) + (a - 3d)\left( {a + d} \right) + \left( {a - 3d} \right)\left( {a + 3d} \right) + \left( {a - d} \right)\left( {a + d} \right) + \left( {a - d} \right)\left( {a + 3d} \right) + \left( {a + d} \right)\left( {a + 3d} \right) = - 21 \\

\Rightarrow {S_2} = {a^2} - 4d + 3{d^2} + {a^2} - 2d - 3{d^2} + {a^2} - 9{d^2} + {a^2} - {d^2} + {a^2} + 2d - 3{d^2} + {a^2} + 4d + 3{d^2} = - 21 \\

\Rightarrow {S_2} = 6{a^2} - 10{d^2} = - 21 \\

\]

Since, \[a = - \dfrac{1}{2}\]

\[

{S_2} = 6{\left( { - \dfrac{1}{2}} \right)^2} - 10{d^2} = - 21 \\

10{d^2} = 6\left( {\dfrac{1}{4}} \right) + 21 \\

10{d^2} = \dfrac{{6 + 84}}{4} \\

{d^2} = \dfrac{{90}}{4} \times \dfrac{1}{{10}} \\

{d^2} = \dfrac{{90}}{{40}} = \dfrac{9}{4} \\

\therefore d = \dfrac{3}{2} \\

\]

So, the roots are

\[

\Rightarrow \dfrac{1}{{a - 3d}} = \dfrac{1}{{ - \dfrac{1}{2} - 3\left( {\dfrac{3}{2}} \right)}} = \dfrac{1}{{ - \dfrac{{(1 + 9)}}{2}}} = \dfrac{1}{{ - \dfrac{{10}}{2}}} = - \dfrac{1}{5} \\

\Rightarrow \dfrac{1}{{a - d}} = \dfrac{1}{{ - \dfrac{1}{2} - \dfrac{3}{2}}} = \dfrac{1}{{ - \dfrac{4}{2}}} = - \dfrac{1}{2} \\

\Rightarrow \dfrac{1}{{a + d}} = \dfrac{1}{{ - \dfrac{1}{2} + \dfrac{3}{2}}} = \dfrac{2}{2} = 1 \\

\Rightarrow \dfrac{1}{{a + 3d}} = \dfrac{1}{{ - \dfrac{1}{2} + 3\left( {\dfrac{3}{2}} \right)}} = \dfrac{1}{{\dfrac{{( - 1 + 9)}}{2}}} = \dfrac{2}{8} = \dfrac{1}{4} \\

\]

Hence the roots of the equation \[40{x^4} - 22{x^3} - 21{x^2} + 2x + 1 = 0\] are \[ - \dfrac{1}{5}, - \dfrac{1}{2},1{\text{ and }}\dfrac{1}{4}\]

Note: The given equation is bi-quadratic equation. Hence the equation has 4 roots. Whenever the equation is transformed, the roots of that equation will also be transformed accordingly.

Complete step-by-step answer:

Given equation is \[40{x^4} - 22{x^3} - 21{x^2} + 2x + 1 = 0\]

Let the roots of this equation are \[\dfrac{1}{{a - 3d}},\dfrac{1}{{a - d}},\dfrac{1}{{a + d}}{\text{ and }}\dfrac{1}{{a + 3d}}\].

Transforming the equation by replacing \[x\] with \[\dfrac{1}{x}\].

\[

\Rightarrow 40{\left( {\dfrac{1}{x}} \right)^4} - 22{\left( {\dfrac{1}{x}} \right)^3} - 21{\left( {\dfrac{1}{x}} \right)^2} + 2\left( {\dfrac{1}{x}} \right) + 1 = 0 \\

\Rightarrow \dfrac{{40}}{{{x^4}}} - \dfrac{{22}}{{{x^3}}} - \dfrac{{21}}{{{x^2}}} + \dfrac{2}{x} + 1 = 0 \\

\Rightarrow \dfrac{{40 - 22x - 21{x^2} + 2{x^3} + {x^4}}}{{{x^4}}} = 0 \\

\Rightarrow {x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0 \\

\]

Hence the transformed equation is \[{x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0\] and the roots are transformed into \[a - 3d,a - d,a + d{\text{ and a + 3d}}\].

We know that for the equation \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\], the sum of the roots \[{S_1} = - \dfrac{b}{a}\] and the sum of the roots taken two at a time is \[{S_2} = \dfrac{c}{a}\].

So, by using the above formula for the equation \[{x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0\] we have

Sum of the roots \[{S_1} = - \dfrac{b}{a} = - \dfrac{2}{1}\]

\[

\Rightarrow {S_1} = (a - 3d) + (a - d) + (a + d) + \left( {a + 3d} \right) = - \dfrac{2}{1} \\

\Rightarrow {S_1} = 4a = - 2 \\

\Rightarrow 4a = - 2 \\

\therefore a = - \dfrac{1}{2} \\

\]

Sum of the roots taken two at a time \[{S_2} = \dfrac{c}{a} = \dfrac{{ - 21}}{1} = - 21\]

\[

\Rightarrow {S_2} = (a - 3d)(a - d) + (a - 3d)\left( {a + d} \right) + \left( {a - 3d} \right)\left( {a + 3d} \right) + \left( {a - d} \right)\left( {a + d} \right) + \left( {a - d} \right)\left( {a + 3d} \right) + \left( {a + d} \right)\left( {a + 3d} \right) = - 21 \\

\Rightarrow {S_2} = {a^2} - 4d + 3{d^2} + {a^2} - 2d - 3{d^2} + {a^2} - 9{d^2} + {a^2} - {d^2} + {a^2} + 2d - 3{d^2} + {a^2} + 4d + 3{d^2} = - 21 \\

\Rightarrow {S_2} = 6{a^2} - 10{d^2} = - 21 \\

\]

Since, \[a = - \dfrac{1}{2}\]

\[

{S_2} = 6{\left( { - \dfrac{1}{2}} \right)^2} - 10{d^2} = - 21 \\

10{d^2} = 6\left( {\dfrac{1}{4}} \right) + 21 \\

10{d^2} = \dfrac{{6 + 84}}{4} \\

{d^2} = \dfrac{{90}}{4} \times \dfrac{1}{{10}} \\

{d^2} = \dfrac{{90}}{{40}} = \dfrac{9}{4} \\

\therefore d = \dfrac{3}{2} \\

\]

So, the roots are

\[

\Rightarrow \dfrac{1}{{a - 3d}} = \dfrac{1}{{ - \dfrac{1}{2} - 3\left( {\dfrac{3}{2}} \right)}} = \dfrac{1}{{ - \dfrac{{(1 + 9)}}{2}}} = \dfrac{1}{{ - \dfrac{{10}}{2}}} = - \dfrac{1}{5} \\

\Rightarrow \dfrac{1}{{a - d}} = \dfrac{1}{{ - \dfrac{1}{2} - \dfrac{3}{2}}} = \dfrac{1}{{ - \dfrac{4}{2}}} = - \dfrac{1}{2} \\

\Rightarrow \dfrac{1}{{a + d}} = \dfrac{1}{{ - \dfrac{1}{2} + \dfrac{3}{2}}} = \dfrac{2}{2} = 1 \\

\Rightarrow \dfrac{1}{{a + 3d}} = \dfrac{1}{{ - \dfrac{1}{2} + 3\left( {\dfrac{3}{2}} \right)}} = \dfrac{1}{{\dfrac{{( - 1 + 9)}}{2}}} = \dfrac{2}{8} = \dfrac{1}{4} \\

\]

Hence the roots of the equation \[40{x^4} - 22{x^3} - 21{x^2} + 2x + 1 = 0\] are \[ - \dfrac{1}{5}, - \dfrac{1}{2},1{\text{ and }}\dfrac{1}{4}\]

Note: The given equation is bi-quadratic equation. Hence the equation has 4 roots. Whenever the equation is transformed, the roots of that equation will also be transformed accordingly.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?