
Solve the equation \[40{x^4} - 22{x^3} - 21{x^2} + 2x + 1 = 0\], the roots of which are in harmonic progression.
Answer
594.6k+ views
Hint: In the given question the roots of the equation are in harmonic progression (H.P.). So, take the roots as \[\dfrac{1}{{a - 3d}},\dfrac{1}{{a - d}},\dfrac{1}{{a + d}}{\text{ and }}\dfrac{1}{{a + 3d}}\]. Use this concept to reach the solution of the problem.
Complete step-by-step answer:
Given equation is \[40{x^4} - 22{x^3} - 21{x^2} + 2x + 1 = 0\]
Let the roots of this equation are \[\dfrac{1}{{a - 3d}},\dfrac{1}{{a - d}},\dfrac{1}{{a + d}}{\text{ and }}\dfrac{1}{{a + 3d}}\].
Transforming the equation by replacing \[x\] with \[\dfrac{1}{x}\].
\[
\Rightarrow 40{\left( {\dfrac{1}{x}} \right)^4} - 22{\left( {\dfrac{1}{x}} \right)^3} - 21{\left( {\dfrac{1}{x}} \right)^2} + 2\left( {\dfrac{1}{x}} \right) + 1 = 0 \\
\Rightarrow \dfrac{{40}}{{{x^4}}} - \dfrac{{22}}{{{x^3}}} - \dfrac{{21}}{{{x^2}}} + \dfrac{2}{x} + 1 = 0 \\
\Rightarrow \dfrac{{40 - 22x - 21{x^2} + 2{x^3} + {x^4}}}{{{x^4}}} = 0 \\
\Rightarrow {x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0 \\
\]
Hence the transformed equation is \[{x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0\] and the roots are transformed into \[a - 3d,a - d,a + d{\text{ and a + 3d}}\].
We know that for the equation \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\], the sum of the roots \[{S_1} = - \dfrac{b}{a}\] and the sum of the roots taken two at a time is \[{S_2} = \dfrac{c}{a}\].
So, by using the above formula for the equation \[{x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0\] we have
Sum of the roots \[{S_1} = - \dfrac{b}{a} = - \dfrac{2}{1}\]
\[
\Rightarrow {S_1} = (a - 3d) + (a - d) + (a + d) + \left( {a + 3d} \right) = - \dfrac{2}{1} \\
\Rightarrow {S_1} = 4a = - 2 \\
\Rightarrow 4a = - 2 \\
\therefore a = - \dfrac{1}{2} \\
\]
Sum of the roots taken two at a time \[{S_2} = \dfrac{c}{a} = \dfrac{{ - 21}}{1} = - 21\]
\[
\Rightarrow {S_2} = (a - 3d)(a - d) + (a - 3d)\left( {a + d} \right) + \left( {a - 3d} \right)\left( {a + 3d} \right) + \left( {a - d} \right)\left( {a + d} \right) + \left( {a - d} \right)\left( {a + 3d} \right) + \left( {a + d} \right)\left( {a + 3d} \right) = - 21 \\
\Rightarrow {S_2} = {a^2} - 4d + 3{d^2} + {a^2} - 2d - 3{d^2} + {a^2} - 9{d^2} + {a^2} - {d^2} + {a^2} + 2d - 3{d^2} + {a^2} + 4d + 3{d^2} = - 21 \\
\Rightarrow {S_2} = 6{a^2} - 10{d^2} = - 21 \\
\]
Since, \[a = - \dfrac{1}{2}\]
\[
{S_2} = 6{\left( { - \dfrac{1}{2}} \right)^2} - 10{d^2} = - 21 \\
10{d^2} = 6\left( {\dfrac{1}{4}} \right) + 21 \\
10{d^2} = \dfrac{{6 + 84}}{4} \\
{d^2} = \dfrac{{90}}{4} \times \dfrac{1}{{10}} \\
{d^2} = \dfrac{{90}}{{40}} = \dfrac{9}{4} \\
\therefore d = \dfrac{3}{2} \\
\]
So, the roots are
\[
\Rightarrow \dfrac{1}{{a - 3d}} = \dfrac{1}{{ - \dfrac{1}{2} - 3\left( {\dfrac{3}{2}} \right)}} = \dfrac{1}{{ - \dfrac{{(1 + 9)}}{2}}} = \dfrac{1}{{ - \dfrac{{10}}{2}}} = - \dfrac{1}{5} \\
\Rightarrow \dfrac{1}{{a - d}} = \dfrac{1}{{ - \dfrac{1}{2} - \dfrac{3}{2}}} = \dfrac{1}{{ - \dfrac{4}{2}}} = - \dfrac{1}{2} \\
\Rightarrow \dfrac{1}{{a + d}} = \dfrac{1}{{ - \dfrac{1}{2} + \dfrac{3}{2}}} = \dfrac{2}{2} = 1 \\
\Rightarrow \dfrac{1}{{a + 3d}} = \dfrac{1}{{ - \dfrac{1}{2} + 3\left( {\dfrac{3}{2}} \right)}} = \dfrac{1}{{\dfrac{{( - 1 + 9)}}{2}}} = \dfrac{2}{8} = \dfrac{1}{4} \\
\]
Hence the roots of the equation \[40{x^4} - 22{x^3} - 21{x^2} + 2x + 1 = 0\] are \[ - \dfrac{1}{5}, - \dfrac{1}{2},1{\text{ and }}\dfrac{1}{4}\]
Note: The given equation is bi-quadratic equation. Hence the equation has 4 roots. Whenever the equation is transformed, the roots of that equation will also be transformed accordingly.
Complete step-by-step answer:
Given equation is \[40{x^4} - 22{x^3} - 21{x^2} + 2x + 1 = 0\]
Let the roots of this equation are \[\dfrac{1}{{a - 3d}},\dfrac{1}{{a - d}},\dfrac{1}{{a + d}}{\text{ and }}\dfrac{1}{{a + 3d}}\].
Transforming the equation by replacing \[x\] with \[\dfrac{1}{x}\].
\[
\Rightarrow 40{\left( {\dfrac{1}{x}} \right)^4} - 22{\left( {\dfrac{1}{x}} \right)^3} - 21{\left( {\dfrac{1}{x}} \right)^2} + 2\left( {\dfrac{1}{x}} \right) + 1 = 0 \\
\Rightarrow \dfrac{{40}}{{{x^4}}} - \dfrac{{22}}{{{x^3}}} - \dfrac{{21}}{{{x^2}}} + \dfrac{2}{x} + 1 = 0 \\
\Rightarrow \dfrac{{40 - 22x - 21{x^2} + 2{x^3} + {x^4}}}{{{x^4}}} = 0 \\
\Rightarrow {x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0 \\
\]
Hence the transformed equation is \[{x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0\] and the roots are transformed into \[a - 3d,a - d,a + d{\text{ and a + 3d}}\].
We know that for the equation \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\], the sum of the roots \[{S_1} = - \dfrac{b}{a}\] and the sum of the roots taken two at a time is \[{S_2} = \dfrac{c}{a}\].
So, by using the above formula for the equation \[{x^4} + 2{x^3} - 21{x^2} - 22x - 40 = 0\] we have
Sum of the roots \[{S_1} = - \dfrac{b}{a} = - \dfrac{2}{1}\]
\[
\Rightarrow {S_1} = (a - 3d) + (a - d) + (a + d) + \left( {a + 3d} \right) = - \dfrac{2}{1} \\
\Rightarrow {S_1} = 4a = - 2 \\
\Rightarrow 4a = - 2 \\
\therefore a = - \dfrac{1}{2} \\
\]
Sum of the roots taken two at a time \[{S_2} = \dfrac{c}{a} = \dfrac{{ - 21}}{1} = - 21\]
\[
\Rightarrow {S_2} = (a - 3d)(a - d) + (a - 3d)\left( {a + d} \right) + \left( {a - 3d} \right)\left( {a + 3d} \right) + \left( {a - d} \right)\left( {a + d} \right) + \left( {a - d} \right)\left( {a + 3d} \right) + \left( {a + d} \right)\left( {a + 3d} \right) = - 21 \\
\Rightarrow {S_2} = {a^2} - 4d + 3{d^2} + {a^2} - 2d - 3{d^2} + {a^2} - 9{d^2} + {a^2} - {d^2} + {a^2} + 2d - 3{d^2} + {a^2} + 4d + 3{d^2} = - 21 \\
\Rightarrow {S_2} = 6{a^2} - 10{d^2} = - 21 \\
\]
Since, \[a = - \dfrac{1}{2}\]
\[
{S_2} = 6{\left( { - \dfrac{1}{2}} \right)^2} - 10{d^2} = - 21 \\
10{d^2} = 6\left( {\dfrac{1}{4}} \right) + 21 \\
10{d^2} = \dfrac{{6 + 84}}{4} \\
{d^2} = \dfrac{{90}}{4} \times \dfrac{1}{{10}} \\
{d^2} = \dfrac{{90}}{{40}} = \dfrac{9}{4} \\
\therefore d = \dfrac{3}{2} \\
\]
So, the roots are
\[
\Rightarrow \dfrac{1}{{a - 3d}} = \dfrac{1}{{ - \dfrac{1}{2} - 3\left( {\dfrac{3}{2}} \right)}} = \dfrac{1}{{ - \dfrac{{(1 + 9)}}{2}}} = \dfrac{1}{{ - \dfrac{{10}}{2}}} = - \dfrac{1}{5} \\
\Rightarrow \dfrac{1}{{a - d}} = \dfrac{1}{{ - \dfrac{1}{2} - \dfrac{3}{2}}} = \dfrac{1}{{ - \dfrac{4}{2}}} = - \dfrac{1}{2} \\
\Rightarrow \dfrac{1}{{a + d}} = \dfrac{1}{{ - \dfrac{1}{2} + \dfrac{3}{2}}} = \dfrac{2}{2} = 1 \\
\Rightarrow \dfrac{1}{{a + 3d}} = \dfrac{1}{{ - \dfrac{1}{2} + 3\left( {\dfrac{3}{2}} \right)}} = \dfrac{1}{{\dfrac{{( - 1 + 9)}}{2}}} = \dfrac{2}{8} = \dfrac{1}{4} \\
\]
Hence the roots of the equation \[40{x^4} - 22{x^3} - 21{x^2} + 2x + 1 = 0\] are \[ - \dfrac{1}{5}, - \dfrac{1}{2},1{\text{ and }}\dfrac{1}{4}\]
Note: The given equation is bi-quadratic equation. Hence the equation has 4 roots. Whenever the equation is transformed, the roots of that equation will also be transformed accordingly.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What does the Hymn Ek ONKAR SATNAM KARTA PURAKH NIRBHAU class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

How will you obtain OR AND gates from the NAND and class 12 physics CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

Differentiate between exergonic and endergonic rea class 12 biology CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

