Solve the equation: $2{x^5} + {x^4} - 12{x^3} - 12{x^2} + x + 2 = 0$
Answer
Verified
505.5k+ views
Hint: For these types of questions, we start by finding one of the factors and then dividing the given equation with the factor.
So let us start by finding the first factor. If we observe the coefficients of the equation they are$2,1, - 12, - 12,1,2$. Now, if you observe you can see that we have same coefficients for ${x^5}$ and ${x^0}$, ${x^1}$ and ${x^4}$, ${x^2}$ and ${x^3}$.Therefore we can say that $\left( {x + 1} \right)$ , is a factor of the given polynomial.
Therefore we can write,
$\left( {x + 1} \right)\left( {2{x^4} - {x^3} - 11{x^2} - x + 2} \right) = 0$
Now, we will concentrate on $\left( {2{x^4} - {x^3} - 11{x^2} - x + 2} \right) = 0$
We’ll start by dividing the above equation throughout with${x^2}$, we get,
$2{x^2} + \frac{2}{{{x^2}}} - x - \frac{1}{x} - 11 = 0$
To simplify the above equation, let us substitute$x + \frac{1}{x} = a$, we have,
$2\left( {{a^2} - 2} \right) - a - 11 = 0$
If we solve it, we get,
$2{a^2} - a - 15 = 0$
$2{a^2} - 6a + 5a - 15 = 0$
$\left( {2a + 5} \right)\left( {a - 3} \right) = 0$
Next step is to re-equate $a = x + \frac{1}{x}$ and to simplify we are going to multiply the entire equation with${x^2}$, we get,
$\left( {2{x^2} + 5x + 2} \right)\left( {{x^2} - 3x + 1} \right) = 0$
Note: Do not forget to re-equate the variables.
On solving the brackets, we get,
$2{x^5} + {x^4} - 12{x^3} - 12{x^2} + x + 2 = \left( {x + 1} \right)\left( {2{x^2} + 5x + 2} \right)\left( {{x^2} - 3x + 1} \right) = 0$
On simplifying we get,
\[\left( {x + 1} \right)\left( {2x + 1} \right)\left( {x + 2} \right)\left( {{x^2} - 3x + 1} \right) = 0\]
So from the above equation,
The values of x we get are
\[x = - 1, - \frac{1}{2}, - 2,\frac{{3 + \sqrt 5 }}{2},\frac{{3 - \sqrt 5 }}{2}\]
So let us start by finding the first factor. If we observe the coefficients of the equation they are$2,1, - 12, - 12,1,2$. Now, if you observe you can see that we have same coefficients for ${x^5}$ and ${x^0}$, ${x^1}$ and ${x^4}$, ${x^2}$ and ${x^3}$.Therefore we can say that $\left( {x + 1} \right)$ , is a factor of the given polynomial.
Therefore we can write,
$\left( {x + 1} \right)\left( {2{x^4} - {x^3} - 11{x^2} - x + 2} \right) = 0$
Now, we will concentrate on $\left( {2{x^4} - {x^3} - 11{x^2} - x + 2} \right) = 0$
We’ll start by dividing the above equation throughout with${x^2}$, we get,
$2{x^2} + \frac{2}{{{x^2}}} - x - \frac{1}{x} - 11 = 0$
To simplify the above equation, let us substitute$x + \frac{1}{x} = a$, we have,
$2\left( {{a^2} - 2} \right) - a - 11 = 0$
If we solve it, we get,
$2{a^2} - a - 15 = 0$
$2{a^2} - 6a + 5a - 15 = 0$
$\left( {2a + 5} \right)\left( {a - 3} \right) = 0$
Next step is to re-equate $a = x + \frac{1}{x}$ and to simplify we are going to multiply the entire equation with${x^2}$, we get,
$\left( {2{x^2} + 5x + 2} \right)\left( {{x^2} - 3x + 1} \right) = 0$
Note: Do not forget to re-equate the variables.
On solving the brackets, we get,
$2{x^5} + {x^4} - 12{x^3} - 12{x^2} + x + 2 = \left( {x + 1} \right)\left( {2{x^2} + 5x + 2} \right)\left( {{x^2} - 3x + 1} \right) = 0$
On simplifying we get,
\[\left( {x + 1} \right)\left( {2x + 1} \right)\left( {x + 2} \right)\left( {{x^2} - 3x + 1} \right) = 0\]
So from the above equation,
The values of x we get are
\[x = - 1, - \frac{1}{2}, - 2,\frac{{3 + \sqrt 5 }}{2},\frac{{3 - \sqrt 5 }}{2}\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE