
Solve the differential equation $\left( 1+{{x}^{2}} \right)\dfrac{dy}{dx}+y={{e}^{{{\tan }^{-1}}x}}$.
Answer
591.3k+ views
Hint: First convert the equation to the form $\dfrac{dy}{dx}+p\left( x \right)y=g\left( x \right)$ and find the integration factor of the differential equation using $IF={{e}^{\int{p\left( x \right)dx}}}$ . Then the solution of the differential equation is $y\left( IF \right)=\int{\left( IF \right)g\left( x \right)dx}$ . just solve the integral on the right-hand side of the equation and report the answer. To solve integral, the method of substitution is to be used, by taking $t={{\tan }^{-1}}x$.
Complete step by step answer:
Let us start the solution to the above question by converting the equation to the form $\dfrac{dy}{dx}+p\left( x \right)y=g\left( x \right)$ .
$\left( 1+{{x}^{2}} \right)\dfrac{dy}{dx}+y={{e}^{{{\tan }^{-1}}x}}$
$\Rightarrow \dfrac{dy}{dx}+\dfrac{y}{1+{{x}^{2}}}=\dfrac{{{e}^{{{\tan }^{-1}}x}}}{1+{{x}^{2}}}$
Now, we know that the integration factor of the differential equation $\dfrac{dy}{dx}+p\left( x \right)y=g\left( x \right)$ is $IF={{e}^{\int{p\left( x \right)dx}}}$ . For our equation $p\left( x \right)=\dfrac{1}{1+{{x}^{2}}}$ . So, the IF of our differential equation is:
$IF={{e}^{\int{\dfrac{dx}{1+{{x}^{2}}}}}}={{e}^{{{\tan }^{-1}}x}}$
So, the solution to the differential equation $\dfrac{dy}{dx}+p\left( x \right)y=g\left( x \right)$ is: $y\left( IF \right)=\int{\left( IF \right)g\left( x \right)dx}$ .
So, the solution to our differential equation is:
$y{{e}^{{{\tan }^{-1}}x}}=\int{{{e}^{{{\tan }^{-1}}x}}\times \dfrac{{{e}^{{{\tan }^{-1}}x}}}{1+{{x}^{2}}}dx}$
$\Rightarrow y{{e}^{{{\tan }^{-1}}x}}=\int{\dfrac{{{e}^{2{{\tan }^{-1}}x}}}{1+{{x}^{2}}}dx}$
Now, to solve the integral, we will let ${{\tan }^{-1}}x$ to be t.
$t={{\tan }^{-1}}x$
Now, we will differentiate both sides of the equation. On doing so, we get
$\dfrac{dt}{dx}=\dfrac{d({{\tan }^{-1}}x)}{dx}$
$\Rightarrow \dfrac{dt}{dx}=\dfrac{1}{1+{{x}^{2}}}$
$\Rightarrow dt=\dfrac{dx}{1+{{x}^{2}}}$
Now, we will substitute t and dt in our integral. On doing so, we get
\[y{{e}^{{{\tan }^{-1}}x}}=\int{{{e}^{2t}}dt}\]
Now, we will use the identity that $\int{{{e}^{kx}}dx}=\dfrac{{{e}^{kx}}}{k}+c$ , where k is constant.
\[y{{e}^{{{\tan }^{-1}}x}}=\dfrac{{{e}^{2t}}}{2}+c\]
Now, we will again substitute the value of t according to our assumption. On doing so, we get
\[y{{e}^{{{\tan }^{-1}}x}}=\dfrac{{{e}^{2{{\tan }^{-1}}x}}}{2}+c\]
Hence, the answer to the above question is \[y{{e}^{{{\tan }^{-1}}x}}=\dfrac{{{e}^{2{{\tan }^{-1}}x}}}{2}+c\].
Note: Remember that integrating factor and the above used method is only valid for the differential equations which can be written in the form of $\dfrac{dy}{dx}+p\left( x \right)y=g\left( x \right)$ . Also, don’t forget the constant of integration or to substitute the assumed variables while reporting the final answer. Don’t make the mistake and try to substitute $t=\dfrac{1}{1+{{x}^{2}}}$ to solve the integral, as it won’t give any useful results.
Complete step by step answer:
Let us start the solution to the above question by converting the equation to the form $\dfrac{dy}{dx}+p\left( x \right)y=g\left( x \right)$ .
$\left( 1+{{x}^{2}} \right)\dfrac{dy}{dx}+y={{e}^{{{\tan }^{-1}}x}}$
$\Rightarrow \dfrac{dy}{dx}+\dfrac{y}{1+{{x}^{2}}}=\dfrac{{{e}^{{{\tan }^{-1}}x}}}{1+{{x}^{2}}}$
Now, we know that the integration factor of the differential equation $\dfrac{dy}{dx}+p\left( x \right)y=g\left( x \right)$ is $IF={{e}^{\int{p\left( x \right)dx}}}$ . For our equation $p\left( x \right)=\dfrac{1}{1+{{x}^{2}}}$ . So, the IF of our differential equation is:
$IF={{e}^{\int{\dfrac{dx}{1+{{x}^{2}}}}}}={{e}^{{{\tan }^{-1}}x}}$
So, the solution to the differential equation $\dfrac{dy}{dx}+p\left( x \right)y=g\left( x \right)$ is: $y\left( IF \right)=\int{\left( IF \right)g\left( x \right)dx}$ .
So, the solution to our differential equation is:
$y{{e}^{{{\tan }^{-1}}x}}=\int{{{e}^{{{\tan }^{-1}}x}}\times \dfrac{{{e}^{{{\tan }^{-1}}x}}}{1+{{x}^{2}}}dx}$
$\Rightarrow y{{e}^{{{\tan }^{-1}}x}}=\int{\dfrac{{{e}^{2{{\tan }^{-1}}x}}}{1+{{x}^{2}}}dx}$
Now, to solve the integral, we will let ${{\tan }^{-1}}x$ to be t.
$t={{\tan }^{-1}}x$
Now, we will differentiate both sides of the equation. On doing so, we get
$\dfrac{dt}{dx}=\dfrac{d({{\tan }^{-1}}x)}{dx}$
$\Rightarrow \dfrac{dt}{dx}=\dfrac{1}{1+{{x}^{2}}}$
$\Rightarrow dt=\dfrac{dx}{1+{{x}^{2}}}$
Now, we will substitute t and dt in our integral. On doing so, we get
\[y{{e}^{{{\tan }^{-1}}x}}=\int{{{e}^{2t}}dt}\]
Now, we will use the identity that $\int{{{e}^{kx}}dx}=\dfrac{{{e}^{kx}}}{k}+c$ , where k is constant.
\[y{{e}^{{{\tan }^{-1}}x}}=\dfrac{{{e}^{2t}}}{2}+c\]
Now, we will again substitute the value of t according to our assumption. On doing so, we get
\[y{{e}^{{{\tan }^{-1}}x}}=\dfrac{{{e}^{2{{\tan }^{-1}}x}}}{2}+c\]
Hence, the answer to the above question is \[y{{e}^{{{\tan }^{-1}}x}}=\dfrac{{{e}^{2{{\tan }^{-1}}x}}}{2}+c\].
Note: Remember that integrating factor and the above used method is only valid for the differential equations which can be written in the form of $\dfrac{dy}{dx}+p\left( x \right)y=g\left( x \right)$ . Also, don’t forget the constant of integration or to substitute the assumed variables while reporting the final answer. Don’t make the mistake and try to substitute $t=\dfrac{1}{1+{{x}^{2}}}$ to solve the integral, as it won’t give any useful results.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

