
Solve the differential equation \[\dfrac{{dy}}{{dx}} + y\cot x = 2x + {x^2}\cot x\]
Answer
618.6k+ views
Hint: The given differential equation is a Bernoulli`s Equation of the form \[\dfrac{{dy}}{{dx}} + Py = Q\] , which can be solved by using its Integrating factor. So, use this concept to reach the solution of the problem. For finding the integrating factor we used integration.
Complete step-by-step solution -
Given \[\dfrac{{dy}}{{dx}} + y\cot x = 2x + {x^2}\cot x\]
This differential equation is of the form
\[\dfrac{{dy}}{{dx}} + Py = Q\]
where \[P = \cot x{\text{ & }}Q = 2x + {x^2}\cot x\]
we know that \[IF = {e^{\int {Pdx} }}\] , so for the given equation
\[
\Rightarrow {\text{IF}} = {e^{\int {\cot xdx} }} \\
\Rightarrow {\text{IF}} = {e^{\log x}}{\text{ }}\left[ {\because \int {\cot xdx = \log \left( {\sin x} \right)} } \right] \\
\Rightarrow {\text{IF}} = \sin x{\text{ }}\left[ {\because {e^{\log x}} = x} \right] \\
\therefore {\text{ IF }} = \sin x \\
\]
The solution of the differential equation of the form \[\dfrac{{dy}}{{dx}} + Py = Q\] is given by \[y \times {\text{IF }} = \int {\left( {Q \times {\text{IF}}} \right)} {\text{ }}dx + c\]
So, for the given differential equation, the solution is
\[
\Rightarrow y \times \sin x{\text{ }} = \int {\left[ {\left( {2x + {x^2}\cot x} \right) \times \sin x} \right]} {\text{ }}dx + c \\
\Rightarrow y \times \sin x{\text{ }} = \int {\left( {2x\sin x + {x^2}\cot x\sin x} \right)dx + c} \\
\Rightarrow y\sin x{\text{ }} = \int {2x\sin xdx} + \int {\left( {{x^2}\sin x \times \dfrac{{\cos x}}{{\sin x}}} \right)dx} + c \\
\Rightarrow y\sin x = 2\int {x\sin xdx} + \int {{x^2}\cos xdx} + c \\
\]
By using the formula of integrating by parts
$\int f(x)\cdot g(x) dx = f(x)\int g(x)dx - \int (f’(x) \cdot (\int g(x) dx)) dx $
We have
\[
\Rightarrow y\sin x = 2\left[ {\sin x\int {xdx - \int {\left\{ {\dfrac{{d\left( {\sin x} \right)}}{{dx}}\int {xdx} } \right\}dx} } } \right] + \int {{x^2}\cos xdx} + c \\
\Rightarrow y\sin x = 2\left[ {\sin x \times \left( {\dfrac{{{x^2}}}{2}} \right) - \int {\left\{ {\cos x \times \left( {\dfrac{{{x^2}}}{2}} \right)} \right\}dx} } \right] + \int {{x^2}\cos xdx} + c \\
\Rightarrow y\sin x = {x^2}\sin x - \int {{x^2}\cos xdx + \int {{x^2}\cos xdx} + c} \\
\]
Cancelling the common terms, we get
\[ \Rightarrow y\sin x = {x^2}\sin x + c\]
Therefore, the solution of the differential equation \[\dfrac{{dy}}{{dx}} + y\cot x = 2x + {x^2}\cot x\] is \[y\sin x = {x^2}\sin x + c\].
Note: The integrating factor of the Bernoulli`s Equation of the form \[\dfrac{{dy}}{{dx}} + Py = Q\] is given by \[IF = {e^{\int {Pdx} }}\]. We have used Integrating by parts method to solve the differential equation.
Complete step-by-step solution -
Given \[\dfrac{{dy}}{{dx}} + y\cot x = 2x + {x^2}\cot x\]
This differential equation is of the form
\[\dfrac{{dy}}{{dx}} + Py = Q\]
where \[P = \cot x{\text{ & }}Q = 2x + {x^2}\cot x\]
we know that \[IF = {e^{\int {Pdx} }}\] , so for the given equation
\[
\Rightarrow {\text{IF}} = {e^{\int {\cot xdx} }} \\
\Rightarrow {\text{IF}} = {e^{\log x}}{\text{ }}\left[ {\because \int {\cot xdx = \log \left( {\sin x} \right)} } \right] \\
\Rightarrow {\text{IF}} = \sin x{\text{ }}\left[ {\because {e^{\log x}} = x} \right] \\
\therefore {\text{ IF }} = \sin x \\
\]
The solution of the differential equation of the form \[\dfrac{{dy}}{{dx}} + Py = Q\] is given by \[y \times {\text{IF }} = \int {\left( {Q \times {\text{IF}}} \right)} {\text{ }}dx + c\]
So, for the given differential equation, the solution is
\[
\Rightarrow y \times \sin x{\text{ }} = \int {\left[ {\left( {2x + {x^2}\cot x} \right) \times \sin x} \right]} {\text{ }}dx + c \\
\Rightarrow y \times \sin x{\text{ }} = \int {\left( {2x\sin x + {x^2}\cot x\sin x} \right)dx + c} \\
\Rightarrow y\sin x{\text{ }} = \int {2x\sin xdx} + \int {\left( {{x^2}\sin x \times \dfrac{{\cos x}}{{\sin x}}} \right)dx} + c \\
\Rightarrow y\sin x = 2\int {x\sin xdx} + \int {{x^2}\cos xdx} + c \\
\]
By using the formula of integrating by parts
$\int f(x)\cdot g(x) dx = f(x)\int g(x)dx - \int (f’(x) \cdot (\int g(x) dx)) dx $
We have
\[
\Rightarrow y\sin x = 2\left[ {\sin x\int {xdx - \int {\left\{ {\dfrac{{d\left( {\sin x} \right)}}{{dx}}\int {xdx} } \right\}dx} } } \right] + \int {{x^2}\cos xdx} + c \\
\Rightarrow y\sin x = 2\left[ {\sin x \times \left( {\dfrac{{{x^2}}}{2}} \right) - \int {\left\{ {\cos x \times \left( {\dfrac{{{x^2}}}{2}} \right)} \right\}dx} } \right] + \int {{x^2}\cos xdx} + c \\
\Rightarrow y\sin x = {x^2}\sin x - \int {{x^2}\cos xdx + \int {{x^2}\cos xdx} + c} \\
\]
Cancelling the common terms, we get
\[ \Rightarrow y\sin x = {x^2}\sin x + c\]
Therefore, the solution of the differential equation \[\dfrac{{dy}}{{dx}} + y\cot x = 2x + {x^2}\cot x\] is \[y\sin x = {x^2}\sin x + c\].
Note: The integrating factor of the Bernoulli`s Equation of the form \[\dfrac{{dy}}{{dx}} + Py = Q\] is given by \[IF = {e^{\int {Pdx} }}\]. We have used Integrating by parts method to solve the differential equation.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

