
Solve: $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ .
Answer
509.7k+ views
Hint: At first take the term $ {{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ from left to right hand side so we get, $ {{\sin }^{2}}{{60}^{\circ }}=1-{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ after that we will use the identity $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ and use it as $ 1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $ and then take $ \theta $ as $ 3x-{{9}^{\circ }} $ and then further solve it to find value of x.
Complete step-by-step answer:
In the question we are given the equation $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ and we have to find the value of x such that it satisfies the equation.
So, we are given the equation, $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ .
Now we will take $ {{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ left to right hand side so we get,
$ {{\sin }^{2}}{{60}^{\circ }}=1-{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ .
We all know the identity that $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ .
So, we can also write it as $ {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $ now will take $ \theta $ as $ 3x-{{9}^{\circ }} $ so we get,
$ {{\sin }^{2}}{{60}^{\circ }}=1-{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ or, $ {{\sin }^{2}}{{60}^{\circ }}={{\sin }^{2}}\left( 3x-{{9}^{\circ }} \right) $ .
So from this we can write that $ {{60}^{\circ }}=3x-{{9}^{\circ }} $ .
Now subtracting $ 3x $ from both the sides we get,
$ {{60}^{\circ }}-3x=3x-{{9}^{\circ }}-3x $ or, $ {{60}^{\circ }}-3x=-{{9}^{\circ }} $ .
Now subtracting $ {{60}^{\circ }} $ from both the sides we get,
$ {{60}^{\circ }}-3x-{{60}^{\circ }}=-{{9}^{\circ }}-{{60}^{\circ }} $ or, $ -3x=-69 $ .
Hence the value of x will be $ \dfrac{-69}{-3} $ or, 23
So, the answer is 23.
Note: Also we can do this question by another way by directly using the identity that $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ and compare it with $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ . Then we can say that $ 3x-{{9}^{\circ }}={{60}^{\circ }} $ and then solve it to get the value of x.
Complete step-by-step answer:
In the question we are given the equation $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ and we have to find the value of x such that it satisfies the equation.
So, we are given the equation, $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ .
Now we will take $ {{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ left to right hand side so we get,
$ {{\sin }^{2}}{{60}^{\circ }}=1-{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ .
We all know the identity that $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ .
So, we can also write it as $ {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $ now will take $ \theta $ as $ 3x-{{9}^{\circ }} $ so we get,
$ {{\sin }^{2}}{{60}^{\circ }}=1-{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ or, $ {{\sin }^{2}}{{60}^{\circ }}={{\sin }^{2}}\left( 3x-{{9}^{\circ }} \right) $ .
So from this we can write that $ {{60}^{\circ }}=3x-{{9}^{\circ }} $ .
Now subtracting $ 3x $ from both the sides we get,
$ {{60}^{\circ }}-3x=3x-{{9}^{\circ }}-3x $ or, $ {{60}^{\circ }}-3x=-{{9}^{\circ }} $ .
Now subtracting $ {{60}^{\circ }} $ from both the sides we get,
$ {{60}^{\circ }}-3x-{{60}^{\circ }}=-{{9}^{\circ }}-{{60}^{\circ }} $ or, $ -3x=-69 $ .
Hence the value of x will be $ \dfrac{-69}{-3} $ or, 23
So, the answer is 23.
Note: Also we can do this question by another way by directly using the identity that $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ and compare it with $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ . Then we can say that $ 3x-{{9}^{\circ }}={{60}^{\circ }} $ and then solve it to get the value of x.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
