
Solve: $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ .
Answer
594.9k+ views
Hint: At first take the term $ {{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ from left to right hand side so we get, $ {{\sin }^{2}}{{60}^{\circ }}=1-{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ after that we will use the identity $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ and use it as $ 1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $ and then take $ \theta $ as $ 3x-{{9}^{\circ }} $ and then further solve it to find value of x.
Complete step-by-step answer:
In the question we are given the equation $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ and we have to find the value of x such that it satisfies the equation.
So, we are given the equation, $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ .
Now we will take $ {{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ left to right hand side so we get,
$ {{\sin }^{2}}{{60}^{\circ }}=1-{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ .
We all know the identity that $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ .
So, we can also write it as $ {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $ now will take $ \theta $ as $ 3x-{{9}^{\circ }} $ so we get,
$ {{\sin }^{2}}{{60}^{\circ }}=1-{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ or, $ {{\sin }^{2}}{{60}^{\circ }}={{\sin }^{2}}\left( 3x-{{9}^{\circ }} \right) $ .
So from this we can write that $ {{60}^{\circ }}=3x-{{9}^{\circ }} $ .
Now subtracting $ 3x $ from both the sides we get,
$ {{60}^{\circ }}-3x=3x-{{9}^{\circ }}-3x $ or, $ {{60}^{\circ }}-3x=-{{9}^{\circ }} $ .
Now subtracting $ {{60}^{\circ }} $ from both the sides we get,
$ {{60}^{\circ }}-3x-{{60}^{\circ }}=-{{9}^{\circ }}-{{60}^{\circ }} $ or, $ -3x=-69 $ .
Hence the value of x will be $ \dfrac{-69}{-3} $ or, 23
So, the answer is 23.
Note: Also we can do this question by another way by directly using the identity that $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ and compare it with $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ . Then we can say that $ 3x-{{9}^{\circ }}={{60}^{\circ }} $ and then solve it to get the value of x.
Complete step-by-step answer:
In the question we are given the equation $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ and we have to find the value of x such that it satisfies the equation.
So, we are given the equation, $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ .
Now we will take $ {{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ left to right hand side so we get,
$ {{\sin }^{2}}{{60}^{\circ }}=1-{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ .
We all know the identity that $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ .
So, we can also write it as $ {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $ now will take $ \theta $ as $ 3x-{{9}^{\circ }} $ so we get,
$ {{\sin }^{2}}{{60}^{\circ }}=1-{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ or, $ {{\sin }^{2}}{{60}^{\circ }}={{\sin }^{2}}\left( 3x-{{9}^{\circ }} \right) $ .
So from this we can write that $ {{60}^{\circ }}=3x-{{9}^{\circ }} $ .
Now subtracting $ 3x $ from both the sides we get,
$ {{60}^{\circ }}-3x=3x-{{9}^{\circ }}-3x $ or, $ {{60}^{\circ }}-3x=-{{9}^{\circ }} $ .
Now subtracting $ {{60}^{\circ }} $ from both the sides we get,
$ {{60}^{\circ }}-3x-{{60}^{\circ }}=-{{9}^{\circ }}-{{60}^{\circ }} $ or, $ -3x=-69 $ .
Hence the value of x will be $ \dfrac{-69}{-3} $ or, 23
So, the answer is 23.
Note: Also we can do this question by another way by directly using the identity that $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ and compare it with $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ . Then we can say that $ 3x-{{9}^{\circ }}={{60}^{\circ }} $ and then solve it to get the value of x.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

