
Solve: $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ .
Answer
606.6k+ views
Hint: At first take the term $ {{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ from left to right hand side so we get, $ {{\sin }^{2}}{{60}^{\circ }}=1-{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ after that we will use the identity $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ and use it as $ 1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $ and then take $ \theta $ as $ 3x-{{9}^{\circ }} $ and then further solve it to find value of x.
Complete step-by-step answer:
In the question we are given the equation $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ and we have to find the value of x such that it satisfies the equation.
So, we are given the equation, $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ .
Now we will take $ {{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ left to right hand side so we get,
$ {{\sin }^{2}}{{60}^{\circ }}=1-{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ .
We all know the identity that $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ .
So, we can also write it as $ {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $ now will take $ \theta $ as $ 3x-{{9}^{\circ }} $ so we get,
$ {{\sin }^{2}}{{60}^{\circ }}=1-{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ or, $ {{\sin }^{2}}{{60}^{\circ }}={{\sin }^{2}}\left( 3x-{{9}^{\circ }} \right) $ .
So from this we can write that $ {{60}^{\circ }}=3x-{{9}^{\circ }} $ .
Now subtracting $ 3x $ from both the sides we get,
$ {{60}^{\circ }}-3x=3x-{{9}^{\circ }}-3x $ or, $ {{60}^{\circ }}-3x=-{{9}^{\circ }} $ .
Now subtracting $ {{60}^{\circ }} $ from both the sides we get,
$ {{60}^{\circ }}-3x-{{60}^{\circ }}=-{{9}^{\circ }}-{{60}^{\circ }} $ or, $ -3x=-69 $ .
Hence the value of x will be $ \dfrac{-69}{-3} $ or, 23
So, the answer is 23.
Note: Also we can do this question by another way by directly using the identity that $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ and compare it with $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ . Then we can say that $ 3x-{{9}^{\circ }}={{60}^{\circ }} $ and then solve it to get the value of x.
Complete step-by-step answer:
In the question we are given the equation $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ and we have to find the value of x such that it satisfies the equation.
So, we are given the equation, $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ .
Now we will take $ {{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ left to right hand side so we get,
$ {{\sin }^{2}}{{60}^{\circ }}=1-{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ .
We all know the identity that $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ .
So, we can also write it as $ {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $ now will take $ \theta $ as $ 3x-{{9}^{\circ }} $ so we get,
$ {{\sin }^{2}}{{60}^{\circ }}=1-{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) $ or, $ {{\sin }^{2}}{{60}^{\circ }}={{\sin }^{2}}\left( 3x-{{9}^{\circ }} \right) $ .
So from this we can write that $ {{60}^{\circ }}=3x-{{9}^{\circ }} $ .
Now subtracting $ 3x $ from both the sides we get,
$ {{60}^{\circ }}-3x=3x-{{9}^{\circ }}-3x $ or, $ {{60}^{\circ }}-3x=-{{9}^{\circ }} $ .
Now subtracting $ {{60}^{\circ }} $ from both the sides we get,
$ {{60}^{\circ }}-3x-{{60}^{\circ }}=-{{9}^{\circ }}-{{60}^{\circ }} $ or, $ -3x=-69 $ .
Hence the value of x will be $ \dfrac{-69}{-3} $ or, 23
So, the answer is 23.
Note: Also we can do this question by another way by directly using the identity that $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ and compare it with $ {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 $ . Then we can say that $ 3x-{{9}^{\circ }}={{60}^{\circ }} $ and then solve it to get the value of x.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

