
How do you solve power series to solve the Power series to solve the differential equation $y''+2xy'+y=0$?
Answer
491.7k+ views
Hint: Now we are given with a differential equation $y''+2xy'+y=0$ . To solve the equation by differential equation we will first consider the expansion of power series $y=\sum\limits_{1}^{\infty }{{{a}_{n}}{{x}^{n}}}$ . Now we will differentiate the equation to find y’ and y’’ and hence substitute the values in the given equation. Now we will simplify the equation by making the limits common. Now we will solve the equation to find a recurrence relation. Now with the recurrence relation we will get all the variables ${{a}_{n}}$ and hence the function y as $y=\sum\limits_{1}^{\infty }{{{a}_{n}}{{x}^{n}}}$
Complete step-by-step answer:
Now let us say $y=\sum\limits_{0}^{\infty }{{{a}_{n}}{{x}^{n}}}$ be power series expansion of the function y.
Now differentiating we get $y'=\sum\limits_{1}^{\infty }{n{{a}_{n}}{{x}^{n-1}}}$ and $y''=\sum\limits_{2}^{\infty }{n\left( n-1 \right){{a}_{n}}{{x}^{n-2}}}$ .
Now let us substitute the values in the given equation.
$\begin{align}
& \Rightarrow y''+2xy'+2y=\sum\limits_{2}^{\infty }{n\left( n-1 \right){{a}_{n}}{{x}^{n-2}}}+2x\sum\limits_{1}^{\infty }{n{{a}_{n}}{{x}^{n-1}}}+\sum\limits_{0}^{\infty }{{{a}_{n}}{{x}^{n}}} \\
& \Rightarrow y''+2xy'+2y=\sum\limits_{2}^{\infty }{n\left( n-1 \right){{a}_{n}}{{x}^{n-2}}}+2\sum\limits_{1}^{\infty }{n{{a}_{n}}{{x}^{n}}}+\sum\limits_{0}^{\infty }{{{a}_{n}}{{x}^{n}}} \\
\end{align}$
Now substituting n = n + 2 to change the limits in the first summation we get,
$\Rightarrow y''+2xy'+2y=\sum\limits_{0}^{\infty }{\left( n+2 \right)\left( n+1 \right){{a}_{n+2}}{{x}^{n}}}+2\sum\limits_{1}^{\infty }{n{{a}_{n}}{{x}^{n}}}+\sum\limits_{0}^{\infty }{{{a}_{n}}{{x}^{n}}}$
Now let us separate the first term from the first and last summation. Hence we get,
\[\Rightarrow y''+2xy'+2y=2{{a}_{2}}+\sum\limits_{1}^{\infty }{\left( n+2 \right)\left( n+1 \right){{a}_{n+2}}{{x}^{n}}}+2\sum\limits_{1}^{\infty }{n{{a}_{n}}{{x}^{n}}}+{{a}_{0}}+\sum\limits_{1}^{\infty }{{{a}_{n}}{{x}^{n}}}\]
\[\begin{align}
& \Rightarrow y''+2xy'+2y=2{{a}_{2}}+{{a}_{1}}+\sum\limits_{1}^{\infty }{\left( \left( n+2 \right)\left( n+1 \right){{a}_{n+2}}+2n{{a}_{n}}+{{a}_{n}} \right){{x}^{n}}} \\
& \Rightarrow 0=2{{a}_{2}}+{{a}_{1}}+\sum\limits_{1}^{\infty }{\left( \left( n+2 \right)\left( n+1 \right){{a}_{n+2}}+2n{{a}_{n}}+{{a}_{n}} \right){{x}^{n}}} \\
\end{align}\]
$\Rightarrow 2{{a}_{2}}+{{a}_{1}}=0$ and $\left( \left( n+2 \right)\left( n+1 \right){{a}_{n+2}}+2n{{a}_{n}}+{{a}_{n}} \right)=0$
Hence we can say that ${{a}_{1}}=-2{{a}_{2}}$ and \[\left[ \left( n+1 \right)\left( n+2 \right) \right]{{a}_{n+2}}=-\left( 2n+1 \right){{a}_{n}}\]
\[{{a}_{n+2}}=-\dfrac{\left( 2n+1 \right){{a}_{n}}}{\left( n+1 \right)\left( n+2 \right)}\] and ${{a}_{1}}=-2{{a}_{2}}$ .
Now we have a recurrence relation and hence we can write the whole equation in terms of
Hence with this recurrence relation we can write the whole function as $y=\sum\limits_{1}^{\infty }{{{a}_{m}}{{x}^{m}}}$ .
Now assume ${{a}_{1}}=0,{{a}_{0}}=1$ to find odd terms and ${{a}_{0}}=0,{{a}_{1}}=1$ to find even terms.
Hence we get the solution of the differential equation by Power series method.
Note: Now note that when we write \[0=2{{a}_{2}}+{{a}_{1}}+\sum\limits_{1}^{\infty }{\left( \left( n+2 \right)\left( n+1 \right){{a}_{n+2}}+2n{{a}_{n}}+{{a}_{n}} \right){{x}^{n}}}\] the zero on the left represents a zero polynomial which is $0+0x+0{{x}^{2}}+0{{x}^{3}}+...$ Hence comparing the equations we get the coefficient of ${{x}^{n}}$ must be zero for all n. Also note that while taking two solutions to find odd and even terms note that the two solutions must be independent from each other which means it is not multiple of each other
Complete step-by-step answer:
Now let us say $y=\sum\limits_{0}^{\infty }{{{a}_{n}}{{x}^{n}}}$ be power series expansion of the function y.
Now differentiating we get $y'=\sum\limits_{1}^{\infty }{n{{a}_{n}}{{x}^{n-1}}}$ and $y''=\sum\limits_{2}^{\infty }{n\left( n-1 \right){{a}_{n}}{{x}^{n-2}}}$ .
Now let us substitute the values in the given equation.
$\begin{align}
& \Rightarrow y''+2xy'+2y=\sum\limits_{2}^{\infty }{n\left( n-1 \right){{a}_{n}}{{x}^{n-2}}}+2x\sum\limits_{1}^{\infty }{n{{a}_{n}}{{x}^{n-1}}}+\sum\limits_{0}^{\infty }{{{a}_{n}}{{x}^{n}}} \\
& \Rightarrow y''+2xy'+2y=\sum\limits_{2}^{\infty }{n\left( n-1 \right){{a}_{n}}{{x}^{n-2}}}+2\sum\limits_{1}^{\infty }{n{{a}_{n}}{{x}^{n}}}+\sum\limits_{0}^{\infty }{{{a}_{n}}{{x}^{n}}} \\
\end{align}$
Now substituting n = n + 2 to change the limits in the first summation we get,
$\Rightarrow y''+2xy'+2y=\sum\limits_{0}^{\infty }{\left( n+2 \right)\left( n+1 \right){{a}_{n+2}}{{x}^{n}}}+2\sum\limits_{1}^{\infty }{n{{a}_{n}}{{x}^{n}}}+\sum\limits_{0}^{\infty }{{{a}_{n}}{{x}^{n}}}$
Now let us separate the first term from the first and last summation. Hence we get,
\[\Rightarrow y''+2xy'+2y=2{{a}_{2}}+\sum\limits_{1}^{\infty }{\left( n+2 \right)\left( n+1 \right){{a}_{n+2}}{{x}^{n}}}+2\sum\limits_{1}^{\infty }{n{{a}_{n}}{{x}^{n}}}+{{a}_{0}}+\sum\limits_{1}^{\infty }{{{a}_{n}}{{x}^{n}}}\]
\[\begin{align}
& \Rightarrow y''+2xy'+2y=2{{a}_{2}}+{{a}_{1}}+\sum\limits_{1}^{\infty }{\left( \left( n+2 \right)\left( n+1 \right){{a}_{n+2}}+2n{{a}_{n}}+{{a}_{n}} \right){{x}^{n}}} \\
& \Rightarrow 0=2{{a}_{2}}+{{a}_{1}}+\sum\limits_{1}^{\infty }{\left( \left( n+2 \right)\left( n+1 \right){{a}_{n+2}}+2n{{a}_{n}}+{{a}_{n}} \right){{x}^{n}}} \\
\end{align}\]
$\Rightarrow 2{{a}_{2}}+{{a}_{1}}=0$ and $\left( \left( n+2 \right)\left( n+1 \right){{a}_{n+2}}+2n{{a}_{n}}+{{a}_{n}} \right)=0$
Hence we can say that ${{a}_{1}}=-2{{a}_{2}}$ and \[\left[ \left( n+1 \right)\left( n+2 \right) \right]{{a}_{n+2}}=-\left( 2n+1 \right){{a}_{n}}\]
\[{{a}_{n+2}}=-\dfrac{\left( 2n+1 \right){{a}_{n}}}{\left( n+1 \right)\left( n+2 \right)}\] and ${{a}_{1}}=-2{{a}_{2}}$ .
Now we have a recurrence relation and hence we can write the whole equation in terms of
Hence with this recurrence relation we can write the whole function as $y=\sum\limits_{1}^{\infty }{{{a}_{m}}{{x}^{m}}}$ .
Now assume ${{a}_{1}}=0,{{a}_{0}}=1$ to find odd terms and ${{a}_{0}}=0,{{a}_{1}}=1$ to find even terms.
Hence we get the solution of the differential equation by Power series method.
Note: Now note that when we write \[0=2{{a}_{2}}+{{a}_{1}}+\sum\limits_{1}^{\infty }{\left( \left( n+2 \right)\left( n+1 \right){{a}_{n+2}}+2n{{a}_{n}}+{{a}_{n}} \right){{x}^{n}}}\] the zero on the left represents a zero polynomial which is $0+0x+0{{x}^{2}}+0{{x}^{3}}+...$ Hence comparing the equations we get the coefficient of ${{x}^{n}}$ must be zero for all n. Also note that while taking two solutions to find odd and even terms note that the two solutions must be independent from each other which means it is not multiple of each other
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
