
How do you solve \[\left| \dfrac{5}{2x-1} \right|\ge \left| \dfrac{1}{x-2} \right|\]?
Answer
555.9k+ views
Hint: We express the whole domain into three parts for the equation \[\left| \dfrac{5}{2x-1} \right|\ge \left| \dfrac{1}{x-2} \right|\]. We break it according to the denominators of the equations. We then find the solutions for the equation and check if the intervals satisfy or not. Modulus function $f\left( x \right)=\left| x \right|$ works as the distance of the number from 0. The number can be both positive and negative but the distance of that number will always be positive. Distance can never be negative.
Complete step-by-step solution:
We try to break the whole domain into three parts for the equation \[\left| \dfrac{5}{2x-1} \right|\ge \left| \dfrac{1}{x-2} \right|\].
The divisions are $x\in \left( -\infty ,-\dfrac{1}{2} \right)\cup \left[ -\dfrac{1}{2},2 \right)\cup \left[ 2,\infty \right)$.
We found these breaking points based on the denominators of the equations \[\left| \dfrac{5}{2x-1} \right|\ge \left| \dfrac{1}{x-2} \right|\]
Therefore, for $x\in \left( -\infty ,-\dfrac{1}{2} \right)$, the values of both the denominators are negative which gives \[\left| \dfrac{5}{2x-1} \right|=\dfrac{-5}{2x-1},\left| \dfrac{1}{x-2} \right|=\dfrac{-1}{x-2}\].
The inequation becomes \[\dfrac{-5}{2x-1}\ge \dfrac{-1}{x-2}\]. Simplifying we get
\[\begin{align}
& \dfrac{-5}{2x-1}\ge \dfrac{-1}{x-2} \\
& \Rightarrow 5x-10\ge 2x-1 \\
& \Rightarrow 3x\ge 9 \\
& \Rightarrow x\ge 3 \\
\end{align}\]
The conditions $x\in \left( -\infty ,-\dfrac{1}{2} \right)$ and \[x\ge 3\] can’t happen together. We don’t have any solution in the interval $x\in \left( -\infty ,-\dfrac{1}{2} \right)$.
Therefore, for $x\in \left[ -\dfrac{1}{2},2 \right)$, the values of the denominators are positive and negative respectively which gives \[\left| \dfrac{5}{2x-1} \right|=\dfrac{5}{2x-1},\left| \dfrac{1}{x-2} \right|=\dfrac{-1}{x-2}\].
The inequation becomes \[\dfrac{5}{2x-1}\ge \dfrac{-1}{x-2}\]. Simplifying we get
\[\begin{align}
& \dfrac{5}{2x-1}\ge \dfrac{-1}{x-2} \\
& \Rightarrow 5x-10\le 1-2x \\
& \Rightarrow 7x\le 11 \\
& \Rightarrow x\le \dfrac{11}{7} \\
\end{align}\]
The conditions $x\in \left[ -\dfrac{1}{2},2 \right)$ and \[x\le \dfrac{11}{7}\] can happen together. We have solutions in the interval $x\in \left[ -\dfrac{1}{2},\dfrac{11}{7} \right]$.
Therefore, for $x\in \left[ 2,\infty \right)$, the values of both the denominators are negative which gives \[\left| \dfrac{5}{2x-1} \right|=\dfrac{5}{2x-1},\left| \dfrac{1}{x-2} \right|=\dfrac{1}{x-2}\].
The inequation becomes \[\dfrac{5}{2x-1}\ge \dfrac{1}{x-2}\]. Simplifying we get
\[\begin{align}
& \dfrac{5}{2x-1}\ge \dfrac{1}{x-2} \\
& \Rightarrow 5x-10\ge 2x-1 \\
& \Rightarrow 3x\ge 9 \\
& \Rightarrow x\ge 3 \\
\end{align}\]
The conditions $x\in \left[ 2,\infty \right)$ and \[x\ge 3\] can happen together. We have solutions in the interval $x\in \left[ 3,\infty \right)$. Therefore, the solution is $x\in \left[ -\dfrac{1}{2},\dfrac{11}{7} \right]\cup \left[ 3,\infty \right)$.
Note: In mathematical notation we express it with modulus value. Let a number be x whose sign is not mentioned. The absolute value of that number will be $\left| x \right|$. We can say $\left| x \right|\ge 0$.
We can express the function $f\left( x \right)=\left| x \right|$ as $f\left( x \right)=\left\{ \begin{align}
& x\left( x\ge 0 \right) \\
& -x\left( x<0 \right) \\
\end{align} \right.$.
We can write $f\left( x \right)=\left| x \right|=\pm x$ depending on the value of the number x.
Complete step-by-step solution:
We try to break the whole domain into three parts for the equation \[\left| \dfrac{5}{2x-1} \right|\ge \left| \dfrac{1}{x-2} \right|\].
The divisions are $x\in \left( -\infty ,-\dfrac{1}{2} \right)\cup \left[ -\dfrac{1}{2},2 \right)\cup \left[ 2,\infty \right)$.
We found these breaking points based on the denominators of the equations \[\left| \dfrac{5}{2x-1} \right|\ge \left| \dfrac{1}{x-2} \right|\]
Therefore, for $x\in \left( -\infty ,-\dfrac{1}{2} \right)$, the values of both the denominators are negative which gives \[\left| \dfrac{5}{2x-1} \right|=\dfrac{-5}{2x-1},\left| \dfrac{1}{x-2} \right|=\dfrac{-1}{x-2}\].
The inequation becomes \[\dfrac{-5}{2x-1}\ge \dfrac{-1}{x-2}\]. Simplifying we get
\[\begin{align}
& \dfrac{-5}{2x-1}\ge \dfrac{-1}{x-2} \\
& \Rightarrow 5x-10\ge 2x-1 \\
& \Rightarrow 3x\ge 9 \\
& \Rightarrow x\ge 3 \\
\end{align}\]
The conditions $x\in \left( -\infty ,-\dfrac{1}{2} \right)$ and \[x\ge 3\] can’t happen together. We don’t have any solution in the interval $x\in \left( -\infty ,-\dfrac{1}{2} \right)$.
Therefore, for $x\in \left[ -\dfrac{1}{2},2 \right)$, the values of the denominators are positive and negative respectively which gives \[\left| \dfrac{5}{2x-1} \right|=\dfrac{5}{2x-1},\left| \dfrac{1}{x-2} \right|=\dfrac{-1}{x-2}\].
The inequation becomes \[\dfrac{5}{2x-1}\ge \dfrac{-1}{x-2}\]. Simplifying we get
\[\begin{align}
& \dfrac{5}{2x-1}\ge \dfrac{-1}{x-2} \\
& \Rightarrow 5x-10\le 1-2x \\
& \Rightarrow 7x\le 11 \\
& \Rightarrow x\le \dfrac{11}{7} \\
\end{align}\]
The conditions $x\in \left[ -\dfrac{1}{2},2 \right)$ and \[x\le \dfrac{11}{7}\] can happen together. We have solutions in the interval $x\in \left[ -\dfrac{1}{2},\dfrac{11}{7} \right]$.
Therefore, for $x\in \left[ 2,\infty \right)$, the values of both the denominators are negative which gives \[\left| \dfrac{5}{2x-1} \right|=\dfrac{5}{2x-1},\left| \dfrac{1}{x-2} \right|=\dfrac{1}{x-2}\].
The inequation becomes \[\dfrac{5}{2x-1}\ge \dfrac{1}{x-2}\]. Simplifying we get
\[\begin{align}
& \dfrac{5}{2x-1}\ge \dfrac{1}{x-2} \\
& \Rightarrow 5x-10\ge 2x-1 \\
& \Rightarrow 3x\ge 9 \\
& \Rightarrow x\ge 3 \\
\end{align}\]
The conditions $x\in \left[ 2,\infty \right)$ and \[x\ge 3\] can happen together. We have solutions in the interval $x\in \left[ 3,\infty \right)$. Therefore, the solution is $x\in \left[ -\dfrac{1}{2},\dfrac{11}{7} \right]\cup \left[ 3,\infty \right)$.
Note: In mathematical notation we express it with modulus value. Let a number be x whose sign is not mentioned. The absolute value of that number will be $\left| x \right|$. We can say $\left| x \right|\ge 0$.
We can express the function $f\left( x \right)=\left| x \right|$ as $f\left( x \right)=\left\{ \begin{align}
& x\left( x\ge 0 \right) \\
& -x\left( x<0 \right) \\
\end{align} \right.$.
We can write $f\left( x \right)=\left| x \right|=\pm x$ depending on the value of the number x.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

