
Solve \[\left( {1 + x} \right)\dfrac{{dy}}{{dx}} - xy = 1 - x\]
Answer
569.4k+ views
Hint:
We can solve a differential equation by finding the integrating factor (I.F.). We will convert the given equation into an equation into standard differential equation. Then we will find the integrating factor for this equation and then find the solution accordingly.
Formulas used: We will use the following formulas:
1. Integration of difference of 2 functions is given by\[\int {\left( {a - b} \right)dx} = \int {adx} + \int {bdx} \].
2. Integration of reciprocal of \[x\] is given by \[\int {\dfrac{1}{x}dx} = \log \left| x \right| + C\].
3. Rule of multiplication of exponents with the same base is given by \[{a^{x - y}} = {a^x} \cdot {a^{ - y}}\].
4. Rule for a negative power is given by \[{a^{ - y}} = \dfrac{1}{{{a^y}}}\].
5. \[{e^{\log x}} = x\]
6. The formula for integration by parts is given by \[\int {uvdx} = u\int v - \int {\left( {u'\int v } \right)dx} \].
7. Difference of 2 square numbers is given by \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\].
Complete step by step solution:
The given equation is of the form
\[\dfrac{{dy}}{{dx}} + py = f\left( x \right)\]………………\[\left( 1 \right)\]
The integrating factor of such an equation is \[{e^{\int {pdx} }}\]and the solution of the equation is given by \[y\left( {{\rm{I}}{\rm{.F}}} \right) = \int {f\left( x \right)\left( {{\rm{I}}{\rm{.F}}} \right)dx} \]…………….\[\left( 2 \right)\].
We will divide both sides of the given equation by \[1 + x\]. Therefore, we get
\[ \Rightarrow \dfrac{{\left( {1 + x} \right)}}{{\left( {1 + x} \right)}}\dfrac{{dy}}{{dx}} - \dfrac{{xy}}{{\left( {1 + x} \right)}} = \dfrac{{1 - x}}{{\left( {1 + x} \right)}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} - \dfrac{{xy}}{{1 + x}} = \dfrac{{1 - x}}{{1 + x}}\]………………….\[\left( 3 \right)\]
On comparing the above equation with equation (1), we can see that
\[ \Rightarrow p = - \dfrac{x}{{1 + x}}\]
We will now find the integral of \[p\]. So,
\[ \Rightarrow \int {pdx} = - \int {\dfrac{x}{{1 + x}}dx} \]
We will add and subtract 1 to the numerator:
\[\begin{array}{l} \Rightarrow \int {pdx} = - \int {\dfrac{{1 + x - 1}}{{1 + x}}dx} \\ \Rightarrow \int {pdx} = - \int {\left( {\dfrac{{1 + x}}{{1 + x}} - \dfrac{1}{{1 + x}}} \right)dx} \end{array}\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow \int {pdx} = - \int {\dfrac{{1 + x}}{{1 + x}}dx} + \int {\dfrac{1}{{1 + x}}dx} \\ \Rightarrow \int {pdx} = - \int {1dx} + \int {\dfrac{1}{{1 + x}}dx} \end{array}\]
Now integrating each term, we get
\[ \Rightarrow \int {pdx} = - x + \log \left( {1 + x} \right) + C\]
Now, we will compute \[{e^{\int {pdx} }}\].
\[\begin{array}{l} \Rightarrow {e^{\int {pdx} }} = {e^{\log \left( {1 + x} \right) - x}}\\ \Rightarrow {e^{\int {pdx} }} = {e^{\log \left( {1 + x} \right)}} \cdot {e^{ - x}}\\ \Rightarrow {e^{\int {pdx} }} = {\left( {1 + x} \right)^{\log e}} \times \dfrac{1}{{{e^x}}}\\ \Rightarrow {e^{\int {pdx} }} = \dfrac{{1 + x}}{{{e^x}}}\end{array}\]
We will find the solution of the differential equation. We will substitute \[\dfrac{{1 + x}}{{{e^x}}}\] for I.F. and \[\dfrac{{1 - x}}{{1 + x}}\] for \[f\left( x \right)\] in equation (2):
\[\begin{array}{l} \Rightarrow y\dfrac{{1 + x}}{{{e^x}}} = \int {\dfrac{{1 - x}}{{1 + x}} \cdot \dfrac{{1 + x}}{{{e^x}}}dx} \\ \Rightarrow y{e^{ - x}}\left( {1 + x} \right) = \int {{e^{ - x}}\left( {1 + x} \right)dx} \end{array}\]
Simplifying the expression, we get
\[ \Rightarrow y{e^{ - x}}\left( {1 + x} \right) = \int {{e^{ - x}}dx} + \int {{e^{ - x}}xdx} \]
Integrating the above expression using the formula, we get
\[\begin{array}{l} \Rightarrow y{e^{ - x}}\left( {1 + x} \right) = - {e^{ - x}} + \left( {x{e^{ - x}} + {e^{ - x}}} \right) + C\\ \Rightarrow y = \dfrac{{x{e^{ - x}}}}{{{e^{ - x}}\left( {1 + x} \right)}} + \dfrac{C}{{{e^{ - x}}\left( {1 + x} \right)}}\end{array}\]
Simplifying the expression, we get
\[ \Rightarrow y = \dfrac{x}{{1 + x}} + C'\]
So the required answer is \[y = \dfrac{x}{{1 + x}} + C'\].
Note:
We can verify whether our solution is correct or not by substituting the value of \[y\] that we have obtained in the original equation. If \[y\] satisfies the equation, then we can be sure that we have solved the question correctly.
We will substitute \[\dfrac{x}{{1 + x}}\] for \[y\] in the left-hand side of the original equation. Therefore, we get
\[{\rm{L}}{\rm{.H}}{\rm{.S}} = \left( {1 + x} \right)\dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right) - x\left( {\dfrac{x}{{1 + x}}} \right)\]
Computing \[\dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right)\], we get
\[\begin{array}{l} \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right) = \dfrac{{\dfrac{d}{{dx}}\left( x \right) \cdot \left( {1 + x} \right) - \dfrac{d}{{dx}}\left( {1 + x} \right) \cdot x}}{{{{\left( {1 + x} \right)}^2}}}\\ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right) = \dfrac{{1 + x - x}}{{{{\left( {1 + x} \right)}^2}}}\\ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right) = \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\end{array}\]
We will substitute \[\dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\] for \[\dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right)\] in equation \[\left( {1 + x} \right)\dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right) - x\left( {\dfrac{x}{{1 + x}}} \right)\]. Therefore, we get
\[\begin{array}{l} \Rightarrow \left( {1 + x} \right)\dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right) - x\left( {\dfrac{x}{{1 + x}}} \right) = \left( {1 + x} \right)\dfrac{1}{{{{\left( {1 + x} \right)}^2}}} - x\left( {\dfrac{x}{{1 + x}}} \right)\\ \Rightarrow \left( {1 + x} \right)\dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right) - x\left( {\dfrac{x}{{1 + x}}} \right) = \dfrac{1}{{1 + x}} - \dfrac{{{x^2}}}{{1 + x}}\end{array}\]
Subtracting the terms, we get
\[\begin{array}{l} \Rightarrow \left( {1 + x} \right)\dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right) - x\left( {\dfrac{x}{{1 + x}}} \right) = \dfrac{{1 - {x^2}}}{{1 + x}}\\ \Rightarrow \left( {1 + x} \right)\dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right) - x\left( {\dfrac{x}{{1 + x}}} \right) = \dfrac{{\left( {1 - x} \right)\left( {1 + x} \right)}}{{\left( {1 + x} \right)}}\\ \Rightarrow 1 - x = {\rm{R}}{\rm{.H}}{\rm{.S}}\end{array}\]
As the left-hand side and the right-hand side are equal, our solution is correct.
We can solve a differential equation by finding the integrating factor (I.F.). We will convert the given equation into an equation into standard differential equation. Then we will find the integrating factor for this equation and then find the solution accordingly.
Formulas used: We will use the following formulas:
1. Integration of difference of 2 functions is given by\[\int {\left( {a - b} \right)dx} = \int {adx} + \int {bdx} \].
2. Integration of reciprocal of \[x\] is given by \[\int {\dfrac{1}{x}dx} = \log \left| x \right| + C\].
3. Rule of multiplication of exponents with the same base is given by \[{a^{x - y}} = {a^x} \cdot {a^{ - y}}\].
4. Rule for a negative power is given by \[{a^{ - y}} = \dfrac{1}{{{a^y}}}\].
5. \[{e^{\log x}} = x\]
6. The formula for integration by parts is given by \[\int {uvdx} = u\int v - \int {\left( {u'\int v } \right)dx} \].
7. Difference of 2 square numbers is given by \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\].
Complete step by step solution:
The given equation is of the form
\[\dfrac{{dy}}{{dx}} + py = f\left( x \right)\]………………\[\left( 1 \right)\]
The integrating factor of such an equation is \[{e^{\int {pdx} }}\]and the solution of the equation is given by \[y\left( {{\rm{I}}{\rm{.F}}} \right) = \int {f\left( x \right)\left( {{\rm{I}}{\rm{.F}}} \right)dx} \]…………….\[\left( 2 \right)\].
We will divide both sides of the given equation by \[1 + x\]. Therefore, we get
\[ \Rightarrow \dfrac{{\left( {1 + x} \right)}}{{\left( {1 + x} \right)}}\dfrac{{dy}}{{dx}} - \dfrac{{xy}}{{\left( {1 + x} \right)}} = \dfrac{{1 - x}}{{\left( {1 + x} \right)}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} - \dfrac{{xy}}{{1 + x}} = \dfrac{{1 - x}}{{1 + x}}\]………………….\[\left( 3 \right)\]
On comparing the above equation with equation (1), we can see that
\[ \Rightarrow p = - \dfrac{x}{{1 + x}}\]
We will now find the integral of \[p\]. So,
\[ \Rightarrow \int {pdx} = - \int {\dfrac{x}{{1 + x}}dx} \]
We will add and subtract 1 to the numerator:
\[\begin{array}{l} \Rightarrow \int {pdx} = - \int {\dfrac{{1 + x - 1}}{{1 + x}}dx} \\ \Rightarrow \int {pdx} = - \int {\left( {\dfrac{{1 + x}}{{1 + x}} - \dfrac{1}{{1 + x}}} \right)dx} \end{array}\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow \int {pdx} = - \int {\dfrac{{1 + x}}{{1 + x}}dx} + \int {\dfrac{1}{{1 + x}}dx} \\ \Rightarrow \int {pdx} = - \int {1dx} + \int {\dfrac{1}{{1 + x}}dx} \end{array}\]
Now integrating each term, we get
\[ \Rightarrow \int {pdx} = - x + \log \left( {1 + x} \right) + C\]
Now, we will compute \[{e^{\int {pdx} }}\].
\[\begin{array}{l} \Rightarrow {e^{\int {pdx} }} = {e^{\log \left( {1 + x} \right) - x}}\\ \Rightarrow {e^{\int {pdx} }} = {e^{\log \left( {1 + x} \right)}} \cdot {e^{ - x}}\\ \Rightarrow {e^{\int {pdx} }} = {\left( {1 + x} \right)^{\log e}} \times \dfrac{1}{{{e^x}}}\\ \Rightarrow {e^{\int {pdx} }} = \dfrac{{1 + x}}{{{e^x}}}\end{array}\]
We will find the solution of the differential equation. We will substitute \[\dfrac{{1 + x}}{{{e^x}}}\] for I.F. and \[\dfrac{{1 - x}}{{1 + x}}\] for \[f\left( x \right)\] in equation (2):
\[\begin{array}{l} \Rightarrow y\dfrac{{1 + x}}{{{e^x}}} = \int {\dfrac{{1 - x}}{{1 + x}} \cdot \dfrac{{1 + x}}{{{e^x}}}dx} \\ \Rightarrow y{e^{ - x}}\left( {1 + x} \right) = \int {{e^{ - x}}\left( {1 + x} \right)dx} \end{array}\]
Simplifying the expression, we get
\[ \Rightarrow y{e^{ - x}}\left( {1 + x} \right) = \int {{e^{ - x}}dx} + \int {{e^{ - x}}xdx} \]
Integrating the above expression using the formula, we get
\[\begin{array}{l} \Rightarrow y{e^{ - x}}\left( {1 + x} \right) = - {e^{ - x}} + \left( {x{e^{ - x}} + {e^{ - x}}} \right) + C\\ \Rightarrow y = \dfrac{{x{e^{ - x}}}}{{{e^{ - x}}\left( {1 + x} \right)}} + \dfrac{C}{{{e^{ - x}}\left( {1 + x} \right)}}\end{array}\]
Simplifying the expression, we get
\[ \Rightarrow y = \dfrac{x}{{1 + x}} + C'\]
So the required answer is \[y = \dfrac{x}{{1 + x}} + C'\].
Note:
We can verify whether our solution is correct or not by substituting the value of \[y\] that we have obtained in the original equation. If \[y\] satisfies the equation, then we can be sure that we have solved the question correctly.
We will substitute \[\dfrac{x}{{1 + x}}\] for \[y\] in the left-hand side of the original equation. Therefore, we get
\[{\rm{L}}{\rm{.H}}{\rm{.S}} = \left( {1 + x} \right)\dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right) - x\left( {\dfrac{x}{{1 + x}}} \right)\]
Computing \[\dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right)\], we get
\[\begin{array}{l} \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right) = \dfrac{{\dfrac{d}{{dx}}\left( x \right) \cdot \left( {1 + x} \right) - \dfrac{d}{{dx}}\left( {1 + x} \right) \cdot x}}{{{{\left( {1 + x} \right)}^2}}}\\ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right) = \dfrac{{1 + x - x}}{{{{\left( {1 + x} \right)}^2}}}\\ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right) = \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\end{array}\]
We will substitute \[\dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\] for \[\dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right)\] in equation \[\left( {1 + x} \right)\dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right) - x\left( {\dfrac{x}{{1 + x}}} \right)\]. Therefore, we get
\[\begin{array}{l} \Rightarrow \left( {1 + x} \right)\dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right) - x\left( {\dfrac{x}{{1 + x}}} \right) = \left( {1 + x} \right)\dfrac{1}{{{{\left( {1 + x} \right)}^2}}} - x\left( {\dfrac{x}{{1 + x}}} \right)\\ \Rightarrow \left( {1 + x} \right)\dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right) - x\left( {\dfrac{x}{{1 + x}}} \right) = \dfrac{1}{{1 + x}} - \dfrac{{{x^2}}}{{1 + x}}\end{array}\]
Subtracting the terms, we get
\[\begin{array}{l} \Rightarrow \left( {1 + x} \right)\dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right) - x\left( {\dfrac{x}{{1 + x}}} \right) = \dfrac{{1 - {x^2}}}{{1 + x}}\\ \Rightarrow \left( {1 + x} \right)\dfrac{d}{{dx}}\left( {\dfrac{x}{{1 + x}}} \right) - x\left( {\dfrac{x}{{1 + x}}} \right) = \dfrac{{\left( {1 - x} \right)\left( {1 + x} \right)}}{{\left( {1 + x} \right)}}\\ \Rightarrow 1 - x = {\rm{R}}{\rm{.H}}{\rm{.S}}\end{array}\]
As the left-hand side and the right-hand side are equal, our solution is correct.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

