
Solve \[\int{\dfrac{{{x}^{4}}+1}{{{x}^{6}}+1}}dx\]
Answer
500.4k+ views
Hint: In this question, to solve the given integral firstly we will add and subtract \[{{x}^{2}}\] in the numerator, then split the terms and find the integration of each terms separately by assuming the integrals as \[{{I}_{1}}\] and \[{{I}_{2}}\] such that \[I={{I}_{1}}+{{I}_{2}}\] so that we can find the obtained result.
Complete step by step answer:
Now according to the question we have to find the integral of \[\int{\dfrac{{{x}^{4}}+1}{{{x}^{6}}+1}}dx\]
Add and subtract \[{{x}^{2}}\] in the numerator we get:
\[\Rightarrow \int{\dfrac{{{x}^{4}}+1+{{x}^{2}}-{{x}^{2}}}{{{x}^{6}}+1}}dx\]
Split the terms:
\[\Rightarrow \int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{{{x}^{6}}+1}}dx+\int{\dfrac{{{x}^{2}}}{{{x}^{6}}+1}dx}\]
Let us assume that \[\int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{{{x}^{6}}+1}}dx={{I}_{1}}\] and \[\int{\dfrac{{{x}^{2}}}{{{x}^{6}}+1}dx}={{I}_{2}}\] such that \[I={{I}_{1}}+{{I}_{2}}\]
Where \[I=\int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{{{x}^{6}}+1}}dx+\int{\dfrac{{{x}^{2}}}{{{x}^{6}}+1}dx}\]
Integrating \[{{I}_{1}}\] we get:
\[\Rightarrow {{I}_{1}}=\int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{{{x}^{6}}+1}}dx\]
\[\Rightarrow {{I}_{1}}=\int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{{{({{x}^{2}})}^{3}}+{{1}^{3}}}}dx\]
Apply the formula \[{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)\] in the denominator:
\[\Rightarrow {{I}_{1}}=\int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{\left( {{x}^{2}}+1 \right)\left( {{\left( {{x}^{2}} \right)}^{2}}+{{1}^{2}}-{{x}^{2}}\times 1 \right)}}dx\]
\[\Rightarrow {{I}_{1}}=\int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{\left( {{x}^{2}}+1 \right)\left( {{x}^{4}}+1-{{x}^{2}} \right)}}dx\]
Cancelling out the required terms we get:
\[\Rightarrow {{I}_{1}}=\int{\dfrac{1}{\left( {{x}^{2}}+1 \right)}}dx\]
\[\Rightarrow {{I}_{1}}={{\tan }^{-1}}x+c\]
Now integrating \[{{I}_{2}}\] we get:
\[\Rightarrow {{I}_{2}}=\int{\dfrac{{{x}^{2}}}{{{x}^{6}}+1}dx}\]
\[\Rightarrow {{I}_{2}}=\int{\dfrac{{{x}^{2}}}{{{\left( {{x}^{3}} \right)}^{2}}+{{1}^{2}}}dx}\]
Put \[{{x}^{3}}=t\] therefore the differential will be
\[\Rightarrow \dfrac{d}{dx}\left( {{x}^{3}} \right)=\dfrac{d}{dx}\left( t \right)\]
\[\Rightarrow 3{{x}^{2}}=\dfrac{dt}{dx}\]
\[\Rightarrow {{x}^{2}}dx=\dfrac{dt}{3}\]
Put the values we get:
\[\Rightarrow {{I}_{2}}=\int{\dfrac{1}{{{\left( t \right)}^{2}}+1}\cdot \dfrac{dt}{3}}\]
\[\Rightarrow {{I}_{2}}=\dfrac{1}{3}\int{\dfrac{1}{{{\left( t \right)}^{2}}+1}\cdot dt}\]
\[\Rightarrow {{I}_{2}}=\dfrac{1}{3}\cdot {{\tan }^{-1}}t+c\]
\[\Rightarrow {{I}_{2}}=\dfrac{1}{3}\cdot {{\tan }^{-1}}{{\left( x \right)}^{3}}+c\]
\[\Rightarrow I={{I}_{1}}+{{I}_{2}}\]
\[\Rightarrow I=\left( {{\tan }^{-1}}x+c \right)+\left( \dfrac{1}{3}\cdot {{\tan }^{-1}}{{\left( x \right)}^{3}}+c \right)\]
\[\Rightarrow I=\left( {{\tan }^{-1}}x+\dfrac{1}{3}\cdot {{\tan }^{-1}}{{\left( x \right)}^{3}}+2c \right)\]
Let \[2c=K\] where \[K\] is any constant
\[\Rightarrow I=\left( {{\tan }^{-1}}x+\dfrac{1}{3}\cdot {{\tan }^{-1}}{{\left( x \right)}^{3}}+K \right)\]
Note:
Integrations are essential for calculating the centre of gravity, centre of mass, and predicting the positions of the planets, among other things. Many things employ integration to find their volume, area, and core values. Integration is the reverse process of differentiation.
Complete step by step answer:
Now according to the question we have to find the integral of \[\int{\dfrac{{{x}^{4}}+1}{{{x}^{6}}+1}}dx\]
Add and subtract \[{{x}^{2}}\] in the numerator we get:
\[\Rightarrow \int{\dfrac{{{x}^{4}}+1+{{x}^{2}}-{{x}^{2}}}{{{x}^{6}}+1}}dx\]
Split the terms:
\[\Rightarrow \int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{{{x}^{6}}+1}}dx+\int{\dfrac{{{x}^{2}}}{{{x}^{6}}+1}dx}\]
Let us assume that \[\int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{{{x}^{6}}+1}}dx={{I}_{1}}\] and \[\int{\dfrac{{{x}^{2}}}{{{x}^{6}}+1}dx}={{I}_{2}}\] such that \[I={{I}_{1}}+{{I}_{2}}\]
Where \[I=\int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{{{x}^{6}}+1}}dx+\int{\dfrac{{{x}^{2}}}{{{x}^{6}}+1}dx}\]
Integrating \[{{I}_{1}}\] we get:
\[\Rightarrow {{I}_{1}}=\int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{{{x}^{6}}+1}}dx\]
\[\Rightarrow {{I}_{1}}=\int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{{{({{x}^{2}})}^{3}}+{{1}^{3}}}}dx\]
Apply the formula \[{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)\] in the denominator:
\[\Rightarrow {{I}_{1}}=\int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{\left( {{x}^{2}}+1 \right)\left( {{\left( {{x}^{2}} \right)}^{2}}+{{1}^{2}}-{{x}^{2}}\times 1 \right)}}dx\]
\[\Rightarrow {{I}_{1}}=\int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{\left( {{x}^{2}}+1 \right)\left( {{x}^{4}}+1-{{x}^{2}} \right)}}dx\]
Cancelling out the required terms we get:
\[\Rightarrow {{I}_{1}}=\int{\dfrac{1}{\left( {{x}^{2}}+1 \right)}}dx\]
\[\Rightarrow {{I}_{1}}={{\tan }^{-1}}x+c\]
Now integrating \[{{I}_{2}}\] we get:
\[\Rightarrow {{I}_{2}}=\int{\dfrac{{{x}^{2}}}{{{x}^{6}}+1}dx}\]
\[\Rightarrow {{I}_{2}}=\int{\dfrac{{{x}^{2}}}{{{\left( {{x}^{3}} \right)}^{2}}+{{1}^{2}}}dx}\]
Put \[{{x}^{3}}=t\] therefore the differential will be
\[\Rightarrow \dfrac{d}{dx}\left( {{x}^{3}} \right)=\dfrac{d}{dx}\left( t \right)\]
\[\Rightarrow 3{{x}^{2}}=\dfrac{dt}{dx}\]
\[\Rightarrow {{x}^{2}}dx=\dfrac{dt}{3}\]
Put the values we get:
\[\Rightarrow {{I}_{2}}=\int{\dfrac{1}{{{\left( t \right)}^{2}}+1}\cdot \dfrac{dt}{3}}\]
\[\Rightarrow {{I}_{2}}=\dfrac{1}{3}\int{\dfrac{1}{{{\left( t \right)}^{2}}+1}\cdot dt}\]
\[\Rightarrow {{I}_{2}}=\dfrac{1}{3}\cdot {{\tan }^{-1}}t+c\]
\[\Rightarrow {{I}_{2}}=\dfrac{1}{3}\cdot {{\tan }^{-1}}{{\left( x \right)}^{3}}+c\]
\[\Rightarrow I={{I}_{1}}+{{I}_{2}}\]
\[\Rightarrow I=\left( {{\tan }^{-1}}x+c \right)+\left( \dfrac{1}{3}\cdot {{\tan }^{-1}}{{\left( x \right)}^{3}}+c \right)\]
\[\Rightarrow I=\left( {{\tan }^{-1}}x+\dfrac{1}{3}\cdot {{\tan }^{-1}}{{\left( x \right)}^{3}}+2c \right)\]
Let \[2c=K\] where \[K\] is any constant
\[\Rightarrow I=\left( {{\tan }^{-1}}x+\dfrac{1}{3}\cdot {{\tan }^{-1}}{{\left( x \right)}^{3}}+K \right)\]
Note:
Integrations are essential for calculating the centre of gravity, centre of mass, and predicting the positions of the planets, among other things. Many things employ integration to find their volume, area, and core values. Integration is the reverse process of differentiation.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

