Solve:
$ \int {\sqrt {\cot x} dx} $
Last updated date: 24th Mar 2023
•
Total views: 206.7k
•
Views today: 2.83k
Answer
206.7k+ views
Hint: If we try to replace $ \cot x $ with simpler terms like $ \sin x $ and $ \cos x $ , then we will end up complicating it. It is better to solve it using $ \cot x $ itself and by using the required formulas to solve the integral.
Complete step-by-step answer:
Let us consider \[\sqrt {\cot x} = t\], then $ \cot x = {t^2} $
On differentiating both sides of $ \cot x = {t^2} $ with respect to $ x $ , we get,
$
- \cos e{c^2}x.dx = 2t.dt \\
\Rightarrow - \cos e{c^2}x = 2t\dfrac{{dt}}{{dx}} \\
\Rightarrow \cos e{c^2}x = - 2t\dfrac{{dt}}{{dx}} \\
$
Using the formula, $ 1 + {\cot ^2}x = \cos e{c^2}x $ , in the above equation we get,
$ 1 + {\cot ^2}x = - 2t.\dfrac{{dt}}{{dx}} $
Since, $ \cot x = {t^2} $ , on substituting in the above equation, we get,
$ 1 + {t^4} = - 2t.\dfrac{{dt}}{{dx}} $
On rearranging the terms, the equation would be,
$ dx = \dfrac{{ - 2t}}{{1 + {t^4}}}dt $
Substituting the values of $ \sqrt {\cot x} $ and $ dx $ in $ \int {\sqrt {\cot x} dx} $ , we get,
$
I = \int {t.\dfrac{{ - 2t}}{{1 + {t^4}}}dt} \\
\Rightarrow I = \int {\dfrac{{ - 2{t^2}}}{{1 + {t^4}}}dt} \\
$
We can take the negative sign out of the integral,
$ I = - \int {\dfrac{{2{t^2}}}{{1 + {t^4}}}dt} $
To solve this integral, we add and subtract the numerator with $ 1 $ :
\[
I = - \int {\dfrac{{2{t^2} + 1 - 1}}{{{t^4} + 1}}d} t \\
= - \int {\dfrac{{{t^2} + 1 + {t^2} - 1}}{{{t^4} + 1}}d} t \\
= - \int {\left( {\dfrac{{{t^2} + 1}}{{{t^4} + 1}} + \dfrac{{{t^2} - 1}}{{{t^4} + 1}}} \right)d} t \\
\]
Now, we split the integral into two different integrals and solve them separately.
The two integrals are:
$ {I_1} = \int {\dfrac{{{t^2} + 1}}{{{t^4} + 1}}} dt $ and $ {I_2} = \int {\dfrac{{{t^2} - 1}}{{{t^4} + 1}}} dt $
On dividing the numerator and the denominator of the first integral with $ {t^2} $ ,
\[{I_1} = \int {\dfrac{{1 + \dfrac{1}{{{t^2}}}}}{{{t^2} + \dfrac{1}{{{t^2}}}}}} dt\]
The denominator can be written as $ {t^2} + \dfrac{1}{{{t^2}}} = {\left( {t - \dfrac{1}{t}} \right)^2} + 2 $
On replacing this value in the denominator, we get,
\[{I_1} = \int {\dfrac{{1 + \dfrac{1}{{{t^2}}}}}{{{{\left( {t - \dfrac{1}{t}} \right)}^2} + 2}}} dt\]
Let us take $ t - \dfrac{1}{t} = u $
Differentiating the above equation with respect to $ t $ , we get,
$ \left( {1 + \dfrac{1}{{{t^2}}}} \right)dt = du $
On substituting these values in $ {I_1} $ we get,
\[{I_1} = \int {\dfrac{{du}}{{{u^2} + 2}}} \]
Applying the formula, $ \int {\dfrac{{dx}}{{{a^2} + {x^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}\left( {\dfrac{x}{a}} \right)} $ in $ {I_1} $ :
$ {I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{u}{{\sqrt 2 }}} \right) $
Now we replace $ u $ with the value of $ t $ as we know $ u = t - \dfrac{1}{t} $
$
{I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{t - \dfrac{1}{t}}}{{\sqrt 2 }}} \right) \\
\Rightarrow {I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{{t^2} - 1}}{{\sqrt 2 t}}} \right) \;
$
Now we replace $ t $ as we know $ t = \sqrt {\cot x} $
$ {I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right) $
Now, we shall solve $ {I_2} $
$ {I_2} = \int {\dfrac{{{t^2} - 1}}{{{t^4} + 1}}} dt $
On dividing the numerator and the denominator of the second integral with $ {t^2} $ ,
\[{I_2} = \int {\dfrac{{1 - \dfrac{1}{{{t^2}}}}}{{{t^2} + \dfrac{1}{{{t^2}}}}}} dt\]
The denominator can be written as $ {t^2} + \dfrac{1}{{{t^2}}} = {\left( {t + \dfrac{1}{t}} \right)^2} - 2 $
\[{I_2} = \int {\dfrac{{1 - \dfrac{1}{{{t^2}}}}}{{{{\left( {t + \dfrac{1}{t}} \right)}^2} - 2}}} dt\]
Let us take $ v = t + \dfrac{1}{t} $
Differentiating the above equation with respect to $ t $ , we get,
$ dv = \left( {1 - \dfrac{1}{{{t^2}}}} \right)dt $
On substituting these values in $ {I_2} $ we get,
\[{I_2} = \int {\dfrac{{dv}}{{{v^2} - 2}}} \]
Applying the formula, $ \int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left( {\dfrac{{x - a}}{{x + a}}} \right)} $ in $ {I_2} $ :
\[{I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{v - \sqrt 2 }}{{v + \sqrt 2 }}} \right)\]
Now we replace $ v $ with the value of $ t $ as we know $ v = t + \dfrac{1}{t} $
\[
{I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{t + \dfrac{1}{t} - \sqrt 2 }}{{t + \dfrac{1}{t} + \sqrt 2 }}} \right) \\
\Rightarrow {I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{{t^2} + 1 - \sqrt 2 t}}{{{t^2} + 1 + \sqrt 2 t}}} \right) \;
\]
Now we replace $ t $ as we know that $ {t^2} = \cot x $
\[{I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right)\]
Now we have to combine both the integrals, $ I = - \left( {{I_1} + {I_2}} \right) $
$ I = - \left[ {\dfrac{1}{{\sqrt 2 }}{{\tan }^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right) + \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right)} \right] + C $
Therefore, $ \int {\sqrt {\cot x} dx} = - \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right) - \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right) + C $
Where $ C $ represents the constant of integration.
So, the correct answer is “ $ - \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right) - \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right) + C $ ”.
Note: Integrals are widely used in a variety of fields. Integrals, for example, are used in probability theory to calculate the probability of a random variable falling within a given range. In the substitution method in the final answer do not forget to put the original function back.
Complete step-by-step answer:
Let us consider \[\sqrt {\cot x} = t\], then $ \cot x = {t^2} $
On differentiating both sides of $ \cot x = {t^2} $ with respect to $ x $ , we get,
$
- \cos e{c^2}x.dx = 2t.dt \\
\Rightarrow - \cos e{c^2}x = 2t\dfrac{{dt}}{{dx}} \\
\Rightarrow \cos e{c^2}x = - 2t\dfrac{{dt}}{{dx}} \\
$
Using the formula, $ 1 + {\cot ^2}x = \cos e{c^2}x $ , in the above equation we get,
$ 1 + {\cot ^2}x = - 2t.\dfrac{{dt}}{{dx}} $
Since, $ \cot x = {t^2} $ , on substituting in the above equation, we get,
$ 1 + {t^4} = - 2t.\dfrac{{dt}}{{dx}} $
On rearranging the terms, the equation would be,
$ dx = \dfrac{{ - 2t}}{{1 + {t^4}}}dt $
Substituting the values of $ \sqrt {\cot x} $ and $ dx $ in $ \int {\sqrt {\cot x} dx} $ , we get,
$
I = \int {t.\dfrac{{ - 2t}}{{1 + {t^4}}}dt} \\
\Rightarrow I = \int {\dfrac{{ - 2{t^2}}}{{1 + {t^4}}}dt} \\
$
We can take the negative sign out of the integral,
$ I = - \int {\dfrac{{2{t^2}}}{{1 + {t^4}}}dt} $
To solve this integral, we add and subtract the numerator with $ 1 $ :
\[
I = - \int {\dfrac{{2{t^2} + 1 - 1}}{{{t^4} + 1}}d} t \\
= - \int {\dfrac{{{t^2} + 1 + {t^2} - 1}}{{{t^4} + 1}}d} t \\
= - \int {\left( {\dfrac{{{t^2} + 1}}{{{t^4} + 1}} + \dfrac{{{t^2} - 1}}{{{t^4} + 1}}} \right)d} t \\
\]
Now, we split the integral into two different integrals and solve them separately.
The two integrals are:
$ {I_1} = \int {\dfrac{{{t^2} + 1}}{{{t^4} + 1}}} dt $ and $ {I_2} = \int {\dfrac{{{t^2} - 1}}{{{t^4} + 1}}} dt $
On dividing the numerator and the denominator of the first integral with $ {t^2} $ ,
\[{I_1} = \int {\dfrac{{1 + \dfrac{1}{{{t^2}}}}}{{{t^2} + \dfrac{1}{{{t^2}}}}}} dt\]
The denominator can be written as $ {t^2} + \dfrac{1}{{{t^2}}} = {\left( {t - \dfrac{1}{t}} \right)^2} + 2 $
On replacing this value in the denominator, we get,
\[{I_1} = \int {\dfrac{{1 + \dfrac{1}{{{t^2}}}}}{{{{\left( {t - \dfrac{1}{t}} \right)}^2} + 2}}} dt\]
Let us take $ t - \dfrac{1}{t} = u $
Differentiating the above equation with respect to $ t $ , we get,
$ \left( {1 + \dfrac{1}{{{t^2}}}} \right)dt = du $
On substituting these values in $ {I_1} $ we get,
\[{I_1} = \int {\dfrac{{du}}{{{u^2} + 2}}} \]
Applying the formula, $ \int {\dfrac{{dx}}{{{a^2} + {x^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}\left( {\dfrac{x}{a}} \right)} $ in $ {I_1} $ :
$ {I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{u}{{\sqrt 2 }}} \right) $
Now we replace $ u $ with the value of $ t $ as we know $ u = t - \dfrac{1}{t} $
$
{I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{t - \dfrac{1}{t}}}{{\sqrt 2 }}} \right) \\
\Rightarrow {I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{{t^2} - 1}}{{\sqrt 2 t}}} \right) \;
$
Now we replace $ t $ as we know $ t = \sqrt {\cot x} $
$ {I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right) $
Now, we shall solve $ {I_2} $
$ {I_2} = \int {\dfrac{{{t^2} - 1}}{{{t^4} + 1}}} dt $
On dividing the numerator and the denominator of the second integral with $ {t^2} $ ,
\[{I_2} = \int {\dfrac{{1 - \dfrac{1}{{{t^2}}}}}{{{t^2} + \dfrac{1}{{{t^2}}}}}} dt\]
The denominator can be written as $ {t^2} + \dfrac{1}{{{t^2}}} = {\left( {t + \dfrac{1}{t}} \right)^2} - 2 $
\[{I_2} = \int {\dfrac{{1 - \dfrac{1}{{{t^2}}}}}{{{{\left( {t + \dfrac{1}{t}} \right)}^2} - 2}}} dt\]
Let us take $ v = t + \dfrac{1}{t} $
Differentiating the above equation with respect to $ t $ , we get,
$ dv = \left( {1 - \dfrac{1}{{{t^2}}}} \right)dt $
On substituting these values in $ {I_2} $ we get,
\[{I_2} = \int {\dfrac{{dv}}{{{v^2} - 2}}} \]
Applying the formula, $ \int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left( {\dfrac{{x - a}}{{x + a}}} \right)} $ in $ {I_2} $ :
\[{I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{v - \sqrt 2 }}{{v + \sqrt 2 }}} \right)\]
Now we replace $ v $ with the value of $ t $ as we know $ v = t + \dfrac{1}{t} $
\[
{I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{t + \dfrac{1}{t} - \sqrt 2 }}{{t + \dfrac{1}{t} + \sqrt 2 }}} \right) \\
\Rightarrow {I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{{t^2} + 1 - \sqrt 2 t}}{{{t^2} + 1 + \sqrt 2 t}}} \right) \;
\]
Now we replace $ t $ as we know that $ {t^2} = \cot x $
\[{I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right)\]
Now we have to combine both the integrals, $ I = - \left( {{I_1} + {I_2}} \right) $
$ I = - \left[ {\dfrac{1}{{\sqrt 2 }}{{\tan }^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right) + \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right)} \right] + C $
Therefore, $ \int {\sqrt {\cot x} dx} = - \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right) - \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right) + C $
Where $ C $ represents the constant of integration.
So, the correct answer is “ $ - \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right) - \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right) + C $ ”.
Note: Integrals are widely used in a variety of fields. Integrals, for example, are used in probability theory to calculate the probability of a random variable falling within a given range. In the substitution method in the final answer do not forget to put the original function back.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
