
Solve $\int {\dfrac{{{x^3}}}{{{{({x^2} + 1)}^3}}}} dx$
Answer
554.1k+ views
Hint: We can solve this integration by simply assuming $({x^2} + 1)$as $t$and then converting the whole integration in terms of $t$. Also, ${x^2} + 1 = t \Rightarrow 2xdx = dt$. The numerator can be written as ${x^2}.xdx$. Replace ${x^2}$ by ($t - 1$) and $xdx$by $\dfrac{{dt}}{2}$. In this way, the numerator and denominator will be reduced in terms of $t$which we can solve easily.
Complete Step by Step Solution:
Suppose $I = \int {\dfrac{{{x^3}}}{{{{({x^2} + 1)}^3}}}} dx................$(equation $1$)
Let ${x^2} + 1 = t........$(equation $2$)
On differentiating equation$2$,
$
\Rightarrow 2xdx = dt \\
\Rightarrow dx = \dfrac{{dt}}{2} \\
$
We can rewrite equation $1$as $I = \int {\dfrac{{{x^2}.x}}{{{{({x^2} + 1)}^3}}}} dx$
Replacing ${x^2}$ by ($t - 1$) and $xdx$by $\dfrac{{dt}}{2}$,
$ \Rightarrow I = \int {\dfrac{{(t - 1)}}{{{{(t)}^3}}}} \dfrac{{dt}}{2}$
Taking $\dfrac{1}{2}$outside the integration, as it is a constant;
$
\Rightarrow I = \dfrac{1}{2}\int {\dfrac{{(t - 1)}}{{{{(t)}^3}}}} dt \\
\Rightarrow I = \dfrac{1}{2}\int {(\dfrac{1}{{{t^2}}}} - \dfrac{1}{{{t^3}}})dt \\
$
Integration of ${t^n}$is $\dfrac{{{t^{n + 1}}}}{{n + 1}}$.
$
\\
\Rightarrow I = \dfrac{1}{2}\int {({t^{ - 2}} + {t^{ - 3}})} dt \\
\Rightarrow I = \dfrac{1}{2}(\dfrac{{{t^{ - 2 + 1}}}}{{ - 2 + 1}} + \dfrac{{{t^{ - 3 + 1}}}}{{ - 3 + 1}} + C) \\
\Rightarrow I = - \dfrac{1}{{2t}} - \dfrac{1}{{4{t^2}}} + {C_1} \\
\\
$
Substituting the value of $t$ from equation $2$,
$I = - \dfrac{1}{{2({x^2} + 1)}} - \dfrac{1}{{4{{({x^2} + 1)}^2}}} + {C_1}$
Note:
We can also solve this question like this;
Let $x = \tan \theta $
$ \Rightarrow dx = {\sec ^2}\theta d\theta $
$ \Rightarrow I = \int {\dfrac{{{{\tan }^3}\theta }}{{{{(1 + {{\tan }^2}\theta )}^3}}}} {\sec ^2}\theta d\theta $
$1 + {\tan ^2}\theta = {\sec ^2}\theta $
$ \Rightarrow I = \int {\dfrac{{{{\tan }^3}\theta }}{{{{\sec }^6}\theta }}} {\sec ^2}\theta d\theta $
$ \Rightarrow I = \int {\dfrac{{{{\tan }^3}\theta }}{{{{\sec }^4}\theta }}} d\theta $
$ \Rightarrow I = \int {\dfrac{{{{\sin }^3}\theta }}{{{{\cos }^3}\theta }}} \times {\cos ^4}\theta d\theta $
$ \Rightarrow I = \int {{{\sin }^3}} \theta \times \cos \theta d\theta $
Let $\sin \theta = t$$ \Rightarrow \cos \theta d\theta = dt$
Then $I = \int {{t^3}} dt$
$ \Rightarrow I = \dfrac{{{t^4}}}{4} + C$ As, $t = \sin \theta $$ \Rightarrow I = \dfrac{{{{\sin }^4}\theta }}{4} + C$
Now, we have $x = \tan \theta $$ \Rightarrow \sin \theta = \dfrac{x}{{\sqrt {{{(1 + x)}^2}} }}$
Putting this in place of $\sin \theta $,we will get the value of $I$.
It is possible that we get different answers by different methods but if you will solve properly, then on differentiating the result, we will end up getting the same value. Remember important formulas of integration.
Complete Step by Step Solution:
Suppose $I = \int {\dfrac{{{x^3}}}{{{{({x^2} + 1)}^3}}}} dx................$(equation $1$)
Let ${x^2} + 1 = t........$(equation $2$)
On differentiating equation$2$,
$
\Rightarrow 2xdx = dt \\
\Rightarrow dx = \dfrac{{dt}}{2} \\
$
We can rewrite equation $1$as $I = \int {\dfrac{{{x^2}.x}}{{{{({x^2} + 1)}^3}}}} dx$
Replacing ${x^2}$ by ($t - 1$) and $xdx$by $\dfrac{{dt}}{2}$,
$ \Rightarrow I = \int {\dfrac{{(t - 1)}}{{{{(t)}^3}}}} \dfrac{{dt}}{2}$
Taking $\dfrac{1}{2}$outside the integration, as it is a constant;
$
\Rightarrow I = \dfrac{1}{2}\int {\dfrac{{(t - 1)}}{{{{(t)}^3}}}} dt \\
\Rightarrow I = \dfrac{1}{2}\int {(\dfrac{1}{{{t^2}}}} - \dfrac{1}{{{t^3}}})dt \\
$
Integration of ${t^n}$is $\dfrac{{{t^{n + 1}}}}{{n + 1}}$.
$
\\
\Rightarrow I = \dfrac{1}{2}\int {({t^{ - 2}} + {t^{ - 3}})} dt \\
\Rightarrow I = \dfrac{1}{2}(\dfrac{{{t^{ - 2 + 1}}}}{{ - 2 + 1}} + \dfrac{{{t^{ - 3 + 1}}}}{{ - 3 + 1}} + C) \\
\Rightarrow I = - \dfrac{1}{{2t}} - \dfrac{1}{{4{t^2}}} + {C_1} \\
\\
$
Substituting the value of $t$ from equation $2$,
$I = - \dfrac{1}{{2({x^2} + 1)}} - \dfrac{1}{{4{{({x^2} + 1)}^2}}} + {C_1}$
Note:
We can also solve this question like this;
Let $x = \tan \theta $
$ \Rightarrow dx = {\sec ^2}\theta d\theta $
$ \Rightarrow I = \int {\dfrac{{{{\tan }^3}\theta }}{{{{(1 + {{\tan }^2}\theta )}^3}}}} {\sec ^2}\theta d\theta $
$1 + {\tan ^2}\theta = {\sec ^2}\theta $
$ \Rightarrow I = \int {\dfrac{{{{\tan }^3}\theta }}{{{{\sec }^6}\theta }}} {\sec ^2}\theta d\theta $
$ \Rightarrow I = \int {\dfrac{{{{\tan }^3}\theta }}{{{{\sec }^4}\theta }}} d\theta $
$ \Rightarrow I = \int {\dfrac{{{{\sin }^3}\theta }}{{{{\cos }^3}\theta }}} \times {\cos ^4}\theta d\theta $
$ \Rightarrow I = \int {{{\sin }^3}} \theta \times \cos \theta d\theta $
Let $\sin \theta = t$$ \Rightarrow \cos \theta d\theta = dt$
Then $I = \int {{t^3}} dt$
$ \Rightarrow I = \dfrac{{{t^4}}}{4} + C$ As, $t = \sin \theta $$ \Rightarrow I = \dfrac{{{{\sin }^4}\theta }}{4} + C$
Now, we have $x = \tan \theta $$ \Rightarrow \sin \theta = \dfrac{x}{{\sqrt {{{(1 + x)}^2}} }}$
Putting this in place of $\sin \theta $,we will get the value of $I$.
It is possible that we get different answers by different methods but if you will solve properly, then on differentiating the result, we will end up getting the same value. Remember important formulas of integration.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

How many states of matter are there in total class 12 chemistry CBSE

