
Solve \[I = \int {\left( {{e^{x\log a}} + {e^{a\log x}} + {e^{a\log a}}} \right)} dx\].
Answer
499.8k+ views
Hint: First of all, we will separate these three terms and then integrate them individually, as we know \[\int {\left( {a + b} \right)} dx = \int a \]\[dx\] \[ + \int b \]\[dx\]. After separating we will use the logarithmic properties to simplify the terms. The Logarithmic Properties we will use are:
\[a\log b = \log {b^a}\] and \[{e^{\log a}} = a\]. We usually take the base of log to be \[e\] if it is not given. Using these properties and simplifying, we will integrate the three terms individually and then add them.
Integration Formulas to be used are:
\[\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\], where \[c\]is a constant
\[\int {{a^x}} dx = \dfrac{{{a^x}}}{{\log a}} + c\], where \[a\] and \[c\]are constants
\[\int a \]\[dx\] \[ = ax + c\], where \[a\] and \[c\]are constants
Complete step by step answer:
We have \[I = \int {\left( {{e^{x\log a}} + {e^{a\log x}} + {e^{a\log a}}} \right)} dx\]
Using \[\int {\left( {a + b} \right)} dx = \int a \]\[dx\]\[ + \int b \]\[dx\], we get
\[I = \int {\left( {{e^{x\log a}} + {e^{a\log x}} + {e^{a\log a}}} \right)} dx = \int {{e^{x\log a}}} dx + \int {{e^{a\log x}}} dx + \int {{e^{a\log a}}} dx\]
\[I = \int {{e^{x\log a}}} dx + \int {{e^{a\log x}}} dx + \int {{e^{a\log a}}} dx\]
Letting \[\int {{e^{x\log a}}} dx = {I_1}\], \[\int {{e^{a\log x}}} dx = {I_2}\] and \[\int {{e^{a\log a}}} dx = {I_3}\], we get
\[I = {I_1} + {I_2} + {I_3} - - - - - (1)\]
First Solving \[{I_1}\]
\[{I_1} = \int {{e^{x\log a}}} dx\]
Using \[a\log b = \log {b^a}\] in the above expression, we get
\[{I_1} = \int {{e^{\log {a^x}}}} dx\]
Now, using \[{e^{\log a}} = a\], we get
\[{I_1} = \int {{a^x}} dx\]
Now Using the integration formula for \[\int {{a^x}} dx\],
\[{I_1} = \int {{a^x}} dx = \dfrac{{{a^x}}}{{\log a}} + {c_1} - - - - - (2)\], where \[{c_1}\] is a constant
Solving \[{I_2}\] now
\[{I_2} = \int {{e^{a\log x}}} dx\]
Using \[a\log b = \log {b^a}\] in the above equation, we get
\[{I_2} = \int {{e^{\log {x^a}}}} dx\]
Now using \[{e^{\log a}} = a\], we get
\[{I_2} = \int {{x^a}} dx\]
We know, \[\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\]. So,
\[{I_2} = \int {{x^a}} dx = \dfrac{{{x^{a + 1}}}}{{a + 1}} + {c_2} - - - - - (3)\], where \[{c_2}\] is a constant
Now, solving \[{I_3}\]
\[{I_3} = \int {{e^{a\log a}}} dx\]
Using \[a\log b = \log {b^a}\] we get
\[{I_3} = \int {{e^{\log {a^a}}}} dx\]
Now using \[{e^{\log a}} = a\], \[{I_3}\] becomes
\[{I_3} = \int {{a^a}} dx\]
We see that \[{a^a}\] is a constant term. So,
\[{I_3} = \int {{a^a}} dx = x{a^a} + {c_3} - - - - - (4)\], where \[{c_3}\] is a constant.
Now, using (1), (2), (3) and (4), we get
\[I = \dfrac{{{a^x}}}{{\log a}} + {c_1} + \dfrac{{{x^{a + 1}}}}{{a + 1}} + {c_2} + x{a^a} + {c_3}\], where \[{c_1},{c_2},{c_3}\] are constants.
Now combining three constants to one constant, we get
\[I = \dfrac{{{a^x}}}{{\log a}} + \dfrac{{{x^{a + 1}}}}{{a + 1}} + x{a^a} + ({c_1} + {c_2} + {c_3})\]
\[I = \dfrac{{{a^x}}}{{\log a}} + \dfrac{{{x^{a + 1}}}}{{a + 1}} + x{a^a} + c\], where \[c = {c_1} + {c_2} + {c_3}\].
Hence,
\[I = \int {\left( {{e^{x\log a}} + {e^{a\log x}} + {e^{a\log a}}} \right)} dx = \dfrac{{{a^x}}}{{\log a}} + \dfrac{{{x^{a + 1}}}}{{a + 1}} + x{a^a} + c\], where \[c\] is a constant term.
Note:
We need to be very thorough with the logarithmic properties. Also, while applying properties we should check whether we are applying the right property to the respective term or not. While Integrating, we usually forget to add the constant term but it is necessary and should be taken care of.
\[a\log b = \log {b^a}\] and \[{e^{\log a}} = a\]. We usually take the base of log to be \[e\] if it is not given. Using these properties and simplifying, we will integrate the three terms individually and then add them.
Integration Formulas to be used are:
\[\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\], where \[c\]is a constant
\[\int {{a^x}} dx = \dfrac{{{a^x}}}{{\log a}} + c\], where \[a\] and \[c\]are constants
\[\int a \]\[dx\] \[ = ax + c\], where \[a\] and \[c\]are constants
Complete step by step answer:
We have \[I = \int {\left( {{e^{x\log a}} + {e^{a\log x}} + {e^{a\log a}}} \right)} dx\]
Using \[\int {\left( {a + b} \right)} dx = \int a \]\[dx\]\[ + \int b \]\[dx\], we get
\[I = \int {\left( {{e^{x\log a}} + {e^{a\log x}} + {e^{a\log a}}} \right)} dx = \int {{e^{x\log a}}} dx + \int {{e^{a\log x}}} dx + \int {{e^{a\log a}}} dx\]
\[I = \int {{e^{x\log a}}} dx + \int {{e^{a\log x}}} dx + \int {{e^{a\log a}}} dx\]
Letting \[\int {{e^{x\log a}}} dx = {I_1}\], \[\int {{e^{a\log x}}} dx = {I_2}\] and \[\int {{e^{a\log a}}} dx = {I_3}\], we get
\[I = {I_1} + {I_2} + {I_3} - - - - - (1)\]
First Solving \[{I_1}\]
\[{I_1} = \int {{e^{x\log a}}} dx\]
Using \[a\log b = \log {b^a}\] in the above expression, we get
\[{I_1} = \int {{e^{\log {a^x}}}} dx\]
Now, using \[{e^{\log a}} = a\], we get
\[{I_1} = \int {{a^x}} dx\]
Now Using the integration formula for \[\int {{a^x}} dx\],
\[{I_1} = \int {{a^x}} dx = \dfrac{{{a^x}}}{{\log a}} + {c_1} - - - - - (2)\], where \[{c_1}\] is a constant
Solving \[{I_2}\] now
\[{I_2} = \int {{e^{a\log x}}} dx\]
Using \[a\log b = \log {b^a}\] in the above equation, we get
\[{I_2} = \int {{e^{\log {x^a}}}} dx\]
Now using \[{e^{\log a}} = a\], we get
\[{I_2} = \int {{x^a}} dx\]
We know, \[\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\]. So,
\[{I_2} = \int {{x^a}} dx = \dfrac{{{x^{a + 1}}}}{{a + 1}} + {c_2} - - - - - (3)\], where \[{c_2}\] is a constant
Now, solving \[{I_3}\]
\[{I_3} = \int {{e^{a\log a}}} dx\]
Using \[a\log b = \log {b^a}\] we get
\[{I_3} = \int {{e^{\log {a^a}}}} dx\]
Now using \[{e^{\log a}} = a\], \[{I_3}\] becomes
\[{I_3} = \int {{a^a}} dx\]
We see that \[{a^a}\] is a constant term. So,
\[{I_3} = \int {{a^a}} dx = x{a^a} + {c_3} - - - - - (4)\], where \[{c_3}\] is a constant.
Now, using (1), (2), (3) and (4), we get
\[I = \dfrac{{{a^x}}}{{\log a}} + {c_1} + \dfrac{{{x^{a + 1}}}}{{a + 1}} + {c_2} + x{a^a} + {c_3}\], where \[{c_1},{c_2},{c_3}\] are constants.
Now combining three constants to one constant, we get
\[I = \dfrac{{{a^x}}}{{\log a}} + \dfrac{{{x^{a + 1}}}}{{a + 1}} + x{a^a} + ({c_1} + {c_2} + {c_3})\]
\[I = \dfrac{{{a^x}}}{{\log a}} + \dfrac{{{x^{a + 1}}}}{{a + 1}} + x{a^a} + c\], where \[c = {c_1} + {c_2} + {c_3}\].
Hence,
\[I = \int {\left( {{e^{x\log a}} + {e^{a\log x}} + {e^{a\log a}}} \right)} dx = \dfrac{{{a^x}}}{{\log a}} + \dfrac{{{x^{a + 1}}}}{{a + 1}} + x{a^a} + c\], where \[c\] is a constant term.
Note:
We need to be very thorough with the logarithmic properties. Also, while applying properties we should check whether we are applying the right property to the respective term or not. While Integrating, we usually forget to add the constant term but it is necessary and should be taken care of.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

