
Solve for \[x\], \[\left( \begin{matrix}
1+x & 1-x & 1-x \\
1-x & 1+x & 1-x \\
1-x & 1-x & 1+x \\
\end{matrix} \right)=0\]
Answer
518.7k+ views
Hint: In the given question, we are given a determinant and we have to solve for \[x\]. We will consider the first row now. Taking each term of the first row we will multiply as per the determinant rule, that is, \[(1+x)\left( \begin{matrix}
1+x & 1-x \\
1-x & 1+x \\
\end{matrix} \right)\] then we have, \[\left( 1-x \right)\left( \begin{matrix}
1-x & 1-x \\
1-x & 1+x \\
\end{matrix} \right)\] and then \[\left( 1-x \right)\left( \begin{matrix}
1-x & 1+x \\
1-x & 1-x \\
\end{matrix} \right)\] and then equating it to 0. We will then solve further to get an expression using which we will find the value of \[x\] from the obtained expression. Hence, we will have the value of the \[x\].
Complete step by step solution:
According to the given question, we are given a question based on determinants. We are asked to find the value of \[x\] using the given determinant.
The determinant we have is,
\[\left( \begin{matrix}
1+x & 1-x & 1-x \\
1-x & 1+x & 1-x \\
1-x & 1-x & 1+x \\
\end{matrix} \right)=0\]
Here, we will first consider the first row, we have,
\[\Rightarrow (1+x)\left( \begin{matrix}
1+x & 1-x \\
1-x & 1+x \\
\end{matrix} \right)-\left( 1-x \right)\left( \begin{matrix}
1-x & 1-x \\
1-x & 1+x \\
\end{matrix} \right)+\left( 1-x \right)\left( \begin{matrix}
1-x & 1+x \\
1-x & 1-x \\
\end{matrix} \right)=0\]
Solving up the above expression we get,
\[\Rightarrow (1+x)\left[ {{\left( 1+x \right)}^{2}}-{{\left( 1-x \right)}^{2}} \right]-\left( 1-x \right)\left[ \left( 1+x \right)\left( 1-x \right)-{{\left( 1-x \right)}^{2}} \right]+\left( 1-x \right)\left[ {{\left( 1-x \right)}^{2}}-\left( 1+x \right)\left( 1-x \right) \right]=0\]
We will now open use the appropriate identities and open the brackets one by one, so we get,
We are using the identities of,
\[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\] and
\[(a+b)(a-b)={{a}^{2}}-{{b}^{2}}\]
We get the new expression as,
\[\Rightarrow (1+x)\left[ \left( 1+2x+{{x}^{2}} \right)-\left( 1-2x+{{x}^{2}} \right) \right]-\left( 1-x \right)\left[ \left( 1-{{x}^{2}} \right)-\left( 1-2x+{{x}^{2}} \right) \right]+\left( 1-x \right)\left[ \left( 1-2x+{{x}^{2}} \right)-\left( 1-{{x}^{2}} \right) \right]=0\]
Opening up the brackets in the above expression and applying the appropriate signs, we get,
\[\Rightarrow (1+x)\left[ 1+2x+{{x}^{2}}-1+2x-{{x}^{2}} \right]-\left( 1-x \right)\left[ 1-{{x}^{2}}-1+2x-{{x}^{2}} \right]+\left( 1-x \right)\left[ 1-2x+{{x}^{2}}-1+{{x}^{2}} \right]=0\]
We will now cancel out the common terms and we get,
\[\Rightarrow (1+x)\left[ 2x+2x \right]-\left( 1-x \right)\left[ -{{x}^{2}}+2x-{{x}^{2}} \right]+\left( 1-x \right)\left[ -2x+{{x}^{2}}+{{x}^{2}} \right]=0\]
Adding up the similar terms and subtracting the respective ones, we have the expression as,
\[\Rightarrow (1+x)\left[ 4x \right]-\left( 1-x \right)\left[ -2{{x}^{2}}+2x \right]+\left( 1-x \right)\left[ -2x+2{{x}^{2}} \right]=0\]
Solving further, we get,
\[\Rightarrow 4x+4{{x}^{2}}-\left( -2{{x}^{2}}+2x+2{{x}^{3}}-2{{x}^{2}} \right)+\left( -2x+2{{x}^{2}}+2{{x}^{2}}-2{{x}^{3}} \right)=0\]
\[\Rightarrow 4x+4{{x}^{2}}-\left( 2x+2{{x}^{3}}-4{{x}^{2}} \right)+\left( -2x+4{{x}^{2}}-2{{x}^{3}} \right)=0\]
Opening up the main brackets here and applying the sign wherever necessary, we get,
\[\Rightarrow 4x+4{{x}^{2}}-2x-2{{x}^{3}}+4{{x}^{2}}-2x+4{{x}^{2}}-2{{x}^{3}}=0\]
Solving the above expression further, we have,
\[\Rightarrow 12{{x}^{2}}-4{{x}^{3}}=0\]
Writing the above equation in the decreasing order of the degree, we get,
\[\Rightarrow 4{{x}^{3}}-12{{x}^{2}}=0\]
Taking the common terms out, we get the new expression as,
\[\Rightarrow 4{{x}^{2}}(x-3)=0\]
Separating the components and equating it to zero, we get,
\[4{{x}^{2}}=0\] we get, \[\Rightarrow x=0\]
And \[x-3=0\], we get, \[\Rightarrow x=3\]
Therefore, the value of \[x=0,3\].
Note: The determinant should be solved in a very clear and correct way, else even the slightest mistake would mean the entire question getting wrong. Also, the second term in the expansion of the determinant should have the negative sign, do not ever miss this point.
1+x & 1-x \\
1-x & 1+x \\
\end{matrix} \right)\] then we have, \[\left( 1-x \right)\left( \begin{matrix}
1-x & 1-x \\
1-x & 1+x \\
\end{matrix} \right)\] and then \[\left( 1-x \right)\left( \begin{matrix}
1-x & 1+x \\
1-x & 1-x \\
\end{matrix} \right)\] and then equating it to 0. We will then solve further to get an expression using which we will find the value of \[x\] from the obtained expression. Hence, we will have the value of the \[x\].
Complete step by step solution:
According to the given question, we are given a question based on determinants. We are asked to find the value of \[x\] using the given determinant.
The determinant we have is,
\[\left( \begin{matrix}
1+x & 1-x & 1-x \\
1-x & 1+x & 1-x \\
1-x & 1-x & 1+x \\
\end{matrix} \right)=0\]
Here, we will first consider the first row, we have,
\[\Rightarrow (1+x)\left( \begin{matrix}
1+x & 1-x \\
1-x & 1+x \\
\end{matrix} \right)-\left( 1-x \right)\left( \begin{matrix}
1-x & 1-x \\
1-x & 1+x \\
\end{matrix} \right)+\left( 1-x \right)\left( \begin{matrix}
1-x & 1+x \\
1-x & 1-x \\
\end{matrix} \right)=0\]
Solving up the above expression we get,
\[\Rightarrow (1+x)\left[ {{\left( 1+x \right)}^{2}}-{{\left( 1-x \right)}^{2}} \right]-\left( 1-x \right)\left[ \left( 1+x \right)\left( 1-x \right)-{{\left( 1-x \right)}^{2}} \right]+\left( 1-x \right)\left[ {{\left( 1-x \right)}^{2}}-\left( 1+x \right)\left( 1-x \right) \right]=0\]
We will now open use the appropriate identities and open the brackets one by one, so we get,
We are using the identities of,
\[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\] and
\[(a+b)(a-b)={{a}^{2}}-{{b}^{2}}\]
We get the new expression as,
\[\Rightarrow (1+x)\left[ \left( 1+2x+{{x}^{2}} \right)-\left( 1-2x+{{x}^{2}} \right) \right]-\left( 1-x \right)\left[ \left( 1-{{x}^{2}} \right)-\left( 1-2x+{{x}^{2}} \right) \right]+\left( 1-x \right)\left[ \left( 1-2x+{{x}^{2}} \right)-\left( 1-{{x}^{2}} \right) \right]=0\]
Opening up the brackets in the above expression and applying the appropriate signs, we get,
\[\Rightarrow (1+x)\left[ 1+2x+{{x}^{2}}-1+2x-{{x}^{2}} \right]-\left( 1-x \right)\left[ 1-{{x}^{2}}-1+2x-{{x}^{2}} \right]+\left( 1-x \right)\left[ 1-2x+{{x}^{2}}-1+{{x}^{2}} \right]=0\]
We will now cancel out the common terms and we get,
\[\Rightarrow (1+x)\left[ 2x+2x \right]-\left( 1-x \right)\left[ -{{x}^{2}}+2x-{{x}^{2}} \right]+\left( 1-x \right)\left[ -2x+{{x}^{2}}+{{x}^{2}} \right]=0\]
Adding up the similar terms and subtracting the respective ones, we have the expression as,
\[\Rightarrow (1+x)\left[ 4x \right]-\left( 1-x \right)\left[ -2{{x}^{2}}+2x \right]+\left( 1-x \right)\left[ -2x+2{{x}^{2}} \right]=0\]
Solving further, we get,
\[\Rightarrow 4x+4{{x}^{2}}-\left( -2{{x}^{2}}+2x+2{{x}^{3}}-2{{x}^{2}} \right)+\left( -2x+2{{x}^{2}}+2{{x}^{2}}-2{{x}^{3}} \right)=0\]
\[\Rightarrow 4x+4{{x}^{2}}-\left( 2x+2{{x}^{3}}-4{{x}^{2}} \right)+\left( -2x+4{{x}^{2}}-2{{x}^{3}} \right)=0\]
Opening up the main brackets here and applying the sign wherever necessary, we get,
\[\Rightarrow 4x+4{{x}^{2}}-2x-2{{x}^{3}}+4{{x}^{2}}-2x+4{{x}^{2}}-2{{x}^{3}}=0\]
Solving the above expression further, we have,
\[\Rightarrow 12{{x}^{2}}-4{{x}^{3}}=0\]
Writing the above equation in the decreasing order of the degree, we get,
\[\Rightarrow 4{{x}^{3}}-12{{x}^{2}}=0\]
Taking the common terms out, we get the new expression as,
\[\Rightarrow 4{{x}^{2}}(x-3)=0\]
Separating the components and equating it to zero, we get,
\[4{{x}^{2}}=0\] we get, \[\Rightarrow x=0\]
And \[x-3=0\], we get, \[\Rightarrow x=3\]
Therefore, the value of \[x=0,3\].
Note: The determinant should be solved in a very clear and correct way, else even the slightest mistake would mean the entire question getting wrong. Also, the second term in the expansion of the determinant should have the negative sign, do not ever miss this point.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

