
Solve for the value of the integral, given as \[\int {{{\text{a}}^{\text{x}}}} \left[ {{\text{log x + log a log}}\left( {\dfrac{{{{\text{x}}^{\text{x}}}}}{{{{\text{e}}^{\text{x}}}}}} \right)} \right]{\text{dx}}\]=?
$
{\text{A}}{\text{. x}}\left( {{\text{log x - 1}}} \right) \\
{\text{B}}{\text{. }}{{\text{a}}^{\text{x}}}.{\text{x}}\left( {{\text{log x - 1}}} \right) \\
{\text{C}}{\text{. }}{{\text{a}}^{\text{x}}}.{\text{x}}\left( {{\text{log x + 1}}} \right) \\
{\text{D}}{\text{. }}{{\text{a}}^{\text{x}}}.\left( {{\text{log x - 1}}} \right) \\
$
Answer
616.8k+ views
Hint: In order to compute the integral, we divide it into parts and use relevant formulae such as integral by-parts and formula for integral of log x and ${{\text{a}}^{\text{x}}}$ and use product rule of differentiation when necessary.
Complete step-by-step answer:
Given Data,
\[\int {{{\text{a}}^{\text{x}}}} \left[ {{\text{log x + log a log}}\left( {\dfrac{{{{\text{x}}^{\text{x}}}}}{{{{\text{e}}^{\text{x}}}}}} \right)} \right]{\text{dx}}\],
To simplify, we know for a term log ${{\text{x}}^{\text{k}}}$ can be written as, k log x, Also we know ${\text{log}}\left( {\dfrac{{\text{a}}}{{\text{b}}}} \right) = {\text{loga - logb}}$ we use it in the above equation we get
$
= \int {{{\text{a}}^{\text{x}}}} \left[ {{\text{logx + loga}}{\text{.}}{{\left( {\log {\text{x - loge}}} \right)}^{\text{x}}}} \right]{\text{dx}} \\
= \int {{{\text{a}}^{\text{x}}}} \left[ {{\text{logx + loga}}{\text{.x}}\left( {\log {\text{x - loge}}} \right)} \right]{\text{dx}} \\
$
Now we know log e = 1, i.e. our equation becomes
$
= \int {{{\text{a}}^{\text{x}}}} \left[ {{\text{logx + loga}}{\text{.x}}\left( {\log {\text{x - 1}}} \right)} \right]{\text{dx}} \\
= \int {\left[ {{{\text{a}}^{\text{x}}}{\text{logx + }}{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} \right]{\text{dx}}} \\
= \int {{{\text{a}}^{\text{x}}}{\text{logx}}} {\text{ dx + }}\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx - - - - - - (2)}} \\
$
Now let us solve the second term of the equation,
i.e. $\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx - - - - (1)}}$
The above equation is of the form$\int {{\text{uv}}} $, we know $\int {{\text{uv}}} $= ${\text{u}}\int {\text{v}} - \int {{\text{u'}}} \int {\text{v}} $
Comparing the formula with equation (1), we consider
u = x (log x - 1) and v = ${{\text{a}}^{\text{x}}}$log a
$ \Rightarrow {\text{u' = }}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{x}}\left( {{\text{logx - 1}}} \right)} \right)$
It is in the form of$\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{uv}}} \right)$, which is given as $\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{uv}}} \right)$=${\text{u}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\text{v}} \right) + {\text{v}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\text{u}} \right)$, hence the equation becomes
${\text{u' = }}\left( {{\text{log x - 1}}} \right)\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\text{x}} \right) + {\text{x}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{log x - 1}}} \right)$
$
\Rightarrow {\text{u' = }}\left( {{\text{logx - 1}}} \right) + {\text{x}}\left( {\dfrac{1}{{\text{x}}} - 0} \right) \\
\Rightarrow {\text{u' = logx - 1 + 1}} \\
\Rightarrow {\text{u' = logx}} \\
$ --- As$\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{logx}}} \right) = \dfrac{1}{{\text{x}}}$.
Now our equation (1) becomes
$\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx}}$
= $\int {{\text{uv}}} $
$ = {\text{ x}}\left( {{\text{log x - 1}}} \right)\int {{{\text{a}}^{\text{x}}}{\text{loga}}} - \int {{\text{log x}}} \int {{{\text{a}}^{\text{x}}}\log {\text{a}}} {\text{ dx}}$
Now we know$\int {{{\text{a}}^{\text{x}}}} = \dfrac{{{{\text{a}}^{\text{x}}}}}{{{\text{log a}}}}$, hence the equation becomes
$
= {\text{ x}}\left( {{\text{log x - 1}}} \right){\text{ }}\dfrac{{{{\text{a}}^{\text{x}}}}}{{{\text{log a}}}}{\text{.log a - }}\int {{\text{log x}}} .\dfrac{{{{\text{a}}^{\text{x}}}}}{{{\text{log a}}}}{\text{.log a}} \\
{\text{ = x}}\left( {{\text{log x - 1}}} \right){\text{ }}{{\text{a}}^{\text{x}}}{\text{ - }}\int {{\text{log x}}} .{{\text{a}}^{\text{x}}}{\text{dx}} \\
$
Now substitute the obtained value in equation (2) we get,
$\int {{{\text{a}}^{\text{x}}}{\text{logx}}} {\text{ dx + }}\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx}}$= $\int {{{\text{a}}^{\text{x}}}{\text{logx}}} {\text{ dx + x}}\left( {{\text{log x - 1}}} \right){\text{ }}{{\text{a}}^{\text{x}}}{\text{ - }}\int {{\text{log x}}} .{{\text{a}}^{\text{x}}}{\text{dx}}$
⟹${\text{x}}\left( {{\text{log x - 1}}} \right){\text{ }}{{\text{a}}^{\text{x}}}$
⟹${{\text{a}}^{\text{x}}}.{\text{x}}\left( {{\text{log x - 1}}} \right)$
Hence Option B is the correct answer.
Note: In order to solve this type of question the key is to perform simplification on the given equation using logarithmic identities. A good knowledge in formulas of integration and differentiation of terms like log x, ${{\text{a}}^{\text{x}}}$and similar terms is appreciated. Solving the equation by splitting it makes it simpler.
Complete step-by-step answer:
Given Data,
\[\int {{{\text{a}}^{\text{x}}}} \left[ {{\text{log x + log a log}}\left( {\dfrac{{{{\text{x}}^{\text{x}}}}}{{{{\text{e}}^{\text{x}}}}}} \right)} \right]{\text{dx}}\],
To simplify, we know for a term log ${{\text{x}}^{\text{k}}}$ can be written as, k log x, Also we know ${\text{log}}\left( {\dfrac{{\text{a}}}{{\text{b}}}} \right) = {\text{loga - logb}}$ we use it in the above equation we get
$
= \int {{{\text{a}}^{\text{x}}}} \left[ {{\text{logx + loga}}{\text{.}}{{\left( {\log {\text{x - loge}}} \right)}^{\text{x}}}} \right]{\text{dx}} \\
= \int {{{\text{a}}^{\text{x}}}} \left[ {{\text{logx + loga}}{\text{.x}}\left( {\log {\text{x - loge}}} \right)} \right]{\text{dx}} \\
$
Now we know log e = 1, i.e. our equation becomes
$
= \int {{{\text{a}}^{\text{x}}}} \left[ {{\text{logx + loga}}{\text{.x}}\left( {\log {\text{x - 1}}} \right)} \right]{\text{dx}} \\
= \int {\left[ {{{\text{a}}^{\text{x}}}{\text{logx + }}{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} \right]{\text{dx}}} \\
= \int {{{\text{a}}^{\text{x}}}{\text{logx}}} {\text{ dx + }}\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx - - - - - - (2)}} \\
$
Now let us solve the second term of the equation,
i.e. $\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx - - - - (1)}}$
The above equation is of the form$\int {{\text{uv}}} $, we know $\int {{\text{uv}}} $= ${\text{u}}\int {\text{v}} - \int {{\text{u'}}} \int {\text{v}} $
Comparing the formula with equation (1), we consider
u = x (log x - 1) and v = ${{\text{a}}^{\text{x}}}$log a
$ \Rightarrow {\text{u' = }}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{x}}\left( {{\text{logx - 1}}} \right)} \right)$
It is in the form of$\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{uv}}} \right)$, which is given as $\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{uv}}} \right)$=${\text{u}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\text{v}} \right) + {\text{v}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\text{u}} \right)$, hence the equation becomes
${\text{u' = }}\left( {{\text{log x - 1}}} \right)\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\text{x}} \right) + {\text{x}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{log x - 1}}} \right)$
$
\Rightarrow {\text{u' = }}\left( {{\text{logx - 1}}} \right) + {\text{x}}\left( {\dfrac{1}{{\text{x}}} - 0} \right) \\
\Rightarrow {\text{u' = logx - 1 + 1}} \\
\Rightarrow {\text{u' = logx}} \\
$ --- As$\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{logx}}} \right) = \dfrac{1}{{\text{x}}}$.
Now our equation (1) becomes
$\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx}}$
= $\int {{\text{uv}}} $
$ = {\text{ x}}\left( {{\text{log x - 1}}} \right)\int {{{\text{a}}^{\text{x}}}{\text{loga}}} - \int {{\text{log x}}} \int {{{\text{a}}^{\text{x}}}\log {\text{a}}} {\text{ dx}}$
Now we know$\int {{{\text{a}}^{\text{x}}}} = \dfrac{{{{\text{a}}^{\text{x}}}}}{{{\text{log a}}}}$, hence the equation becomes
$
= {\text{ x}}\left( {{\text{log x - 1}}} \right){\text{ }}\dfrac{{{{\text{a}}^{\text{x}}}}}{{{\text{log a}}}}{\text{.log a - }}\int {{\text{log x}}} .\dfrac{{{{\text{a}}^{\text{x}}}}}{{{\text{log a}}}}{\text{.log a}} \\
{\text{ = x}}\left( {{\text{log x - 1}}} \right){\text{ }}{{\text{a}}^{\text{x}}}{\text{ - }}\int {{\text{log x}}} .{{\text{a}}^{\text{x}}}{\text{dx}} \\
$
Now substitute the obtained value in equation (2) we get,
$\int {{{\text{a}}^{\text{x}}}{\text{logx}}} {\text{ dx + }}\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx}}$= $\int {{{\text{a}}^{\text{x}}}{\text{logx}}} {\text{ dx + x}}\left( {{\text{log x - 1}}} \right){\text{ }}{{\text{a}}^{\text{x}}}{\text{ - }}\int {{\text{log x}}} .{{\text{a}}^{\text{x}}}{\text{dx}}$
⟹${\text{x}}\left( {{\text{log x - 1}}} \right){\text{ }}{{\text{a}}^{\text{x}}}$
⟹${{\text{a}}^{\text{x}}}.{\text{x}}\left( {{\text{log x - 1}}} \right)$
Hence Option B is the correct answer.
Note: In order to solve this type of question the key is to perform simplification on the given equation using logarithmic identities. A good knowledge in formulas of integration and differentiation of terms like log x, ${{\text{a}}^{\text{x}}}$and similar terms is appreciated. Solving the equation by splitting it makes it simpler.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

