
Solve for the value of the integral, given as \[\int {{{\text{a}}^{\text{x}}}} \left[ {{\text{log x + log a log}}\left( {\dfrac{{{{\text{x}}^{\text{x}}}}}{{{{\text{e}}^{\text{x}}}}}} \right)} \right]{\text{dx}}\]=?
$
{\text{A}}{\text{. x}}\left( {{\text{log x - 1}}} \right) \\
{\text{B}}{\text{. }}{{\text{a}}^{\text{x}}}.{\text{x}}\left( {{\text{log x - 1}}} \right) \\
{\text{C}}{\text{. }}{{\text{a}}^{\text{x}}}.{\text{x}}\left( {{\text{log x + 1}}} \right) \\
{\text{D}}{\text{. }}{{\text{a}}^{\text{x}}}.\left( {{\text{log x - 1}}} \right) \\
$
Answer
521.4k+ views
Hint: In order to compute the integral, we divide it into parts and use relevant formulae such as integral by-parts and formula for integral of log x and ${{\text{a}}^{\text{x}}}$ and use product rule of differentiation when necessary.
Complete step-by-step answer:
Given Data,
\[\int {{{\text{a}}^{\text{x}}}} \left[ {{\text{log x + log a log}}\left( {\dfrac{{{{\text{x}}^{\text{x}}}}}{{{{\text{e}}^{\text{x}}}}}} \right)} \right]{\text{dx}}\],
To simplify, we know for a term log ${{\text{x}}^{\text{k}}}$ can be written as, k log x, Also we know ${\text{log}}\left( {\dfrac{{\text{a}}}{{\text{b}}}} \right) = {\text{loga - logb}}$ we use it in the above equation we get
$
= \int {{{\text{a}}^{\text{x}}}} \left[ {{\text{logx + loga}}{\text{.}}{{\left( {\log {\text{x - loge}}} \right)}^{\text{x}}}} \right]{\text{dx}} \\
= \int {{{\text{a}}^{\text{x}}}} \left[ {{\text{logx + loga}}{\text{.x}}\left( {\log {\text{x - loge}}} \right)} \right]{\text{dx}} \\
$
Now we know log e = 1, i.e. our equation becomes
$
= \int {{{\text{a}}^{\text{x}}}} \left[ {{\text{logx + loga}}{\text{.x}}\left( {\log {\text{x - 1}}} \right)} \right]{\text{dx}} \\
= \int {\left[ {{{\text{a}}^{\text{x}}}{\text{logx + }}{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} \right]{\text{dx}}} \\
= \int {{{\text{a}}^{\text{x}}}{\text{logx}}} {\text{ dx + }}\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx - - - - - - (2)}} \\
$
Now let us solve the second term of the equation,
i.e. $\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx - - - - (1)}}$
The above equation is of the form$\int {{\text{uv}}} $, we know $\int {{\text{uv}}} $= ${\text{u}}\int {\text{v}} - \int {{\text{u'}}} \int {\text{v}} $
Comparing the formula with equation (1), we consider
u = x (log x - 1) and v = ${{\text{a}}^{\text{x}}}$log a
$ \Rightarrow {\text{u' = }}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{x}}\left( {{\text{logx - 1}}} \right)} \right)$
It is in the form of$\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{uv}}} \right)$, which is given as $\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{uv}}} \right)$=${\text{u}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\text{v}} \right) + {\text{v}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\text{u}} \right)$, hence the equation becomes
${\text{u' = }}\left( {{\text{log x - 1}}} \right)\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\text{x}} \right) + {\text{x}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{log x - 1}}} \right)$
$
\Rightarrow {\text{u' = }}\left( {{\text{logx - 1}}} \right) + {\text{x}}\left( {\dfrac{1}{{\text{x}}} - 0} \right) \\
\Rightarrow {\text{u' = logx - 1 + 1}} \\
\Rightarrow {\text{u' = logx}} \\
$ --- As$\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{logx}}} \right) = \dfrac{1}{{\text{x}}}$.
Now our equation (1) becomes
$\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx}}$
= $\int {{\text{uv}}} $
$ = {\text{ x}}\left( {{\text{log x - 1}}} \right)\int {{{\text{a}}^{\text{x}}}{\text{loga}}} - \int {{\text{log x}}} \int {{{\text{a}}^{\text{x}}}\log {\text{a}}} {\text{ dx}}$
Now we know$\int {{{\text{a}}^{\text{x}}}} = \dfrac{{{{\text{a}}^{\text{x}}}}}{{{\text{log a}}}}$, hence the equation becomes
$
= {\text{ x}}\left( {{\text{log x - 1}}} \right){\text{ }}\dfrac{{{{\text{a}}^{\text{x}}}}}{{{\text{log a}}}}{\text{.log a - }}\int {{\text{log x}}} .\dfrac{{{{\text{a}}^{\text{x}}}}}{{{\text{log a}}}}{\text{.log a}} \\
{\text{ = x}}\left( {{\text{log x - 1}}} \right){\text{ }}{{\text{a}}^{\text{x}}}{\text{ - }}\int {{\text{log x}}} .{{\text{a}}^{\text{x}}}{\text{dx}} \\
$
Now substitute the obtained value in equation (2) we get,
$\int {{{\text{a}}^{\text{x}}}{\text{logx}}} {\text{ dx + }}\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx}}$= $\int {{{\text{a}}^{\text{x}}}{\text{logx}}} {\text{ dx + x}}\left( {{\text{log x - 1}}} \right){\text{ }}{{\text{a}}^{\text{x}}}{\text{ - }}\int {{\text{log x}}} .{{\text{a}}^{\text{x}}}{\text{dx}}$
⟹${\text{x}}\left( {{\text{log x - 1}}} \right){\text{ }}{{\text{a}}^{\text{x}}}$
⟹${{\text{a}}^{\text{x}}}.{\text{x}}\left( {{\text{log x - 1}}} \right)$
Hence Option B is the correct answer.
Note: In order to solve this type of question the key is to perform simplification on the given equation using logarithmic identities. A good knowledge in formulas of integration and differentiation of terms like log x, ${{\text{a}}^{\text{x}}}$and similar terms is appreciated. Solving the equation by splitting it makes it simpler.
Complete step-by-step answer:
Given Data,
\[\int {{{\text{a}}^{\text{x}}}} \left[ {{\text{log x + log a log}}\left( {\dfrac{{{{\text{x}}^{\text{x}}}}}{{{{\text{e}}^{\text{x}}}}}} \right)} \right]{\text{dx}}\],
To simplify, we know for a term log ${{\text{x}}^{\text{k}}}$ can be written as, k log x, Also we know ${\text{log}}\left( {\dfrac{{\text{a}}}{{\text{b}}}} \right) = {\text{loga - logb}}$ we use it in the above equation we get
$
= \int {{{\text{a}}^{\text{x}}}} \left[ {{\text{logx + loga}}{\text{.}}{{\left( {\log {\text{x - loge}}} \right)}^{\text{x}}}} \right]{\text{dx}} \\
= \int {{{\text{a}}^{\text{x}}}} \left[ {{\text{logx + loga}}{\text{.x}}\left( {\log {\text{x - loge}}} \right)} \right]{\text{dx}} \\
$
Now we know log e = 1, i.e. our equation becomes
$
= \int {{{\text{a}}^{\text{x}}}} \left[ {{\text{logx + loga}}{\text{.x}}\left( {\log {\text{x - 1}}} \right)} \right]{\text{dx}} \\
= \int {\left[ {{{\text{a}}^{\text{x}}}{\text{logx + }}{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} \right]{\text{dx}}} \\
= \int {{{\text{a}}^{\text{x}}}{\text{logx}}} {\text{ dx + }}\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx - - - - - - (2)}} \\
$
Now let us solve the second term of the equation,
i.e. $\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx - - - - (1)}}$
The above equation is of the form$\int {{\text{uv}}} $, we know $\int {{\text{uv}}} $= ${\text{u}}\int {\text{v}} - \int {{\text{u'}}} \int {\text{v}} $
Comparing the formula with equation (1), we consider
u = x (log x - 1) and v = ${{\text{a}}^{\text{x}}}$log a
$ \Rightarrow {\text{u' = }}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{x}}\left( {{\text{logx - 1}}} \right)} \right)$
It is in the form of$\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{uv}}} \right)$, which is given as $\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{uv}}} \right)$=${\text{u}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\text{v}} \right) + {\text{v}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\text{u}} \right)$, hence the equation becomes
${\text{u' = }}\left( {{\text{log x - 1}}} \right)\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\text{x}} \right) + {\text{x}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{log x - 1}}} \right)$
$
\Rightarrow {\text{u' = }}\left( {{\text{logx - 1}}} \right) + {\text{x}}\left( {\dfrac{1}{{\text{x}}} - 0} \right) \\
\Rightarrow {\text{u' = logx - 1 + 1}} \\
\Rightarrow {\text{u' = logx}} \\
$ --- As$\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{logx}}} \right) = \dfrac{1}{{\text{x}}}$.
Now our equation (1) becomes
$\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx}}$
= $\int {{\text{uv}}} $
$ = {\text{ x}}\left( {{\text{log x - 1}}} \right)\int {{{\text{a}}^{\text{x}}}{\text{loga}}} - \int {{\text{log x}}} \int {{{\text{a}}^{\text{x}}}\log {\text{a}}} {\text{ dx}}$
Now we know$\int {{{\text{a}}^{\text{x}}}} = \dfrac{{{{\text{a}}^{\text{x}}}}}{{{\text{log a}}}}$, hence the equation becomes
$
= {\text{ x}}\left( {{\text{log x - 1}}} \right){\text{ }}\dfrac{{{{\text{a}}^{\text{x}}}}}{{{\text{log a}}}}{\text{.log a - }}\int {{\text{log x}}} .\dfrac{{{{\text{a}}^{\text{x}}}}}{{{\text{log a}}}}{\text{.log a}} \\
{\text{ = x}}\left( {{\text{log x - 1}}} \right){\text{ }}{{\text{a}}^{\text{x}}}{\text{ - }}\int {{\text{log x}}} .{{\text{a}}^{\text{x}}}{\text{dx}} \\
$
Now substitute the obtained value in equation (2) we get,
$\int {{{\text{a}}^{\text{x}}}{\text{logx}}} {\text{ dx + }}\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx}}$= $\int {{{\text{a}}^{\text{x}}}{\text{logx}}} {\text{ dx + x}}\left( {{\text{log x - 1}}} \right){\text{ }}{{\text{a}}^{\text{x}}}{\text{ - }}\int {{\text{log x}}} .{{\text{a}}^{\text{x}}}{\text{dx}}$
⟹${\text{x}}\left( {{\text{log x - 1}}} \right){\text{ }}{{\text{a}}^{\text{x}}}$
⟹${{\text{a}}^{\text{x}}}.{\text{x}}\left( {{\text{log x - 1}}} \right)$
Hence Option B is the correct answer.
Note: In order to solve this type of question the key is to perform simplification on the given equation using logarithmic identities. A good knowledge in formulas of integration and differentiation of terms like log x, ${{\text{a}}^{\text{x}}}$and similar terms is appreciated. Solving the equation by splitting it makes it simpler.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
