
Solve: \[\dfrac{{{9^{\dfrac{1}{3}}} \times {{27}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}}\]
Answer
490.2k+ views
Hint: Given is the problem that is based on laws of indices and powers. We can see that the lowest base is 3. So we will convert 9 and 27 in the form of power of 3. Then applying the rules or laws of indices we will solve the problem.
Complete step by step answer:
Given that, \[\dfrac{{{9^{\dfrac{1}{3}}} \times {{27}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}}\]
As we know that 9 is the second power of 3 and 27 is the third power of 3. So we can write,
\[\dfrac{{{9^{\dfrac{1}{3}}} \times {{27}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}} = \dfrac{{{{\left( {{3^2}} \right)}^{\dfrac{1}{3}}} \times {{\left( {{3^3}} \right)}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}}\]
Now we know that, \[{\left( {{a^m}} \right)^n} = {a^{m \times n}}\]
\[\dfrac{{{9^{\dfrac{1}{3}}} \times {{27}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}} = \dfrac{{{{\left( 3 \right)}^{\dfrac{2}{3}}} \times {{\left( 3 \right)}^{\dfrac{{ - 3}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}}\]
Now we know that if the bases are same we can perform the respective operations directly on powers,
\[\dfrac{{{9^{\dfrac{1}{3}}} \times {{27}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}} =\dfrac{{{3^{\dfrac{2}{3} + \left( {\dfrac{{ - 3}}{2}} \right)}}}}{{{3^{\dfrac{{ - 1}}{6} + \left( {\dfrac{{ - 2}}{3}} \right)}}}}\]
\[\Rightarrow \dfrac{{{9^{\dfrac{1}{3}}} \times {{27}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}} = \dfrac{{{3^{\dfrac{{4 - 9}}{6}}}}}{{{3^{\dfrac{{ - 1 - 4}}{6}}}}}\]
\[\Rightarrow \dfrac{{{9^{\dfrac{1}{3}}} \times {{27}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}} = \dfrac{{{3^{\dfrac{{ - 5}}{6}}}}}{{{3^{\dfrac{{ - 5}}{6}}}}}\]
Since the numerator and denominator both are same we can cancel then directly,
\[\therefore \dfrac{{{9^{\dfrac{1}{3}}} \times {{27}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}} = \dfrac{{{9^{\dfrac{1}{3}}} \times {{27}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}} = 1\]
Therefore, the value of \[\dfrac{{{9^{\dfrac{1}{3}}} \times {{27}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}}\] is $1$.
Note: When we solve the problem we should definitely get an idea of converting the bases into one same base since the other two bases are the powers of the smallest base coincidently. Then also note that we can add or subtract or perform the operation on power only and only if the bases are the same and are in product otherwise not. Also note that problems related to powers and bases are totally dependent on the laws of it.
Complete step by step answer:
Given that, \[\dfrac{{{9^{\dfrac{1}{3}}} \times {{27}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}}\]
As we know that 9 is the second power of 3 and 27 is the third power of 3. So we can write,
\[\dfrac{{{9^{\dfrac{1}{3}}} \times {{27}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}} = \dfrac{{{{\left( {{3^2}} \right)}^{\dfrac{1}{3}}} \times {{\left( {{3^3}} \right)}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}}\]
Now we know that, \[{\left( {{a^m}} \right)^n} = {a^{m \times n}}\]
\[\dfrac{{{9^{\dfrac{1}{3}}} \times {{27}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}} = \dfrac{{{{\left( 3 \right)}^{\dfrac{2}{3}}} \times {{\left( 3 \right)}^{\dfrac{{ - 3}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}}\]
Now we know that if the bases are same we can perform the respective operations directly on powers,
\[\dfrac{{{9^{\dfrac{1}{3}}} \times {{27}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}} =\dfrac{{{3^{\dfrac{2}{3} + \left( {\dfrac{{ - 3}}{2}} \right)}}}}{{{3^{\dfrac{{ - 1}}{6} + \left( {\dfrac{{ - 2}}{3}} \right)}}}}\]
\[\Rightarrow \dfrac{{{9^{\dfrac{1}{3}}} \times {{27}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}} = \dfrac{{{3^{\dfrac{{4 - 9}}{6}}}}}{{{3^{\dfrac{{ - 1 - 4}}{6}}}}}\]
\[\Rightarrow \dfrac{{{9^{\dfrac{1}{3}}} \times {{27}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}} = \dfrac{{{3^{\dfrac{{ - 5}}{6}}}}}{{{3^{\dfrac{{ - 5}}{6}}}}}\]
Since the numerator and denominator both are same we can cancel then directly,
\[\therefore \dfrac{{{9^{\dfrac{1}{3}}} \times {{27}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}} = \dfrac{{{9^{\dfrac{1}{3}}} \times {{27}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}} = 1\]
Therefore, the value of \[\dfrac{{{9^{\dfrac{1}{3}}} \times {{27}^{\dfrac{{ - 1}}{2}}}}}{{{3^{\dfrac{{ - 1}}{6}}} \times {3^{\dfrac{{ - 2}}{3}}}}}\] is $1$.
Note: When we solve the problem we should definitely get an idea of converting the bases into one same base since the other two bases are the powers of the smallest base coincidently. Then also note that we can add or subtract or perform the operation on power only and only if the bases are the same and are in product otherwise not. Also note that problems related to powers and bases are totally dependent on the laws of it.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science


