
Solve $\dfrac{10{{x}^{2}}+15x+63}{5{{x}^{2}}-25x+12}=\dfrac{2x+3}{x-5}$
Answer
607.8k+ views
Hint: Rather than thinking about dividing we should first consider cross multiplying and see if anything useful comes along. After cross-multiplication, solve using known techniques of algebra to solve for the value of x.
Complete step by step answer:
We have the equation- $\dfrac{10{{x}^{2}}+15x+63}{5{{x}^{2}}-25x+12}=\dfrac{2x+3}{x-5}$
After cross-multiplying we get,
$(x-5)(10{{x}^{2}}+15x+63)=(2x+3)(5{{x}^{2}}-25x+12)$
After multiplying the terms in LHS and RHS and writing them separately we get,
$10{{x}^{3}}+15{{x}^{2}}+63x-50{{x}^{2}}-75x-315=10{{x}^{3}}-50{{x}^{2}}+24x+15{{x}^{2}}-75x+36$
We see that the terms present in both LHS and RHS are- $10{{x}^{3}}$ , $-50{{x}^{2}}$ , $-75x$ , $15{{x}^{2}}$
Therefore the following terms cancels out and we are left with
$63x-315=24x+36$
Subtracting 24x both sides we have
$39x-315=36$
Adding 315 both sides we have,
$\begin{align}
& 39x=351 \\
& \Rightarrow x=\dfrac{351}{39} \\
& \Rightarrow x=9 \\
\end{align}$
Therefore, the above question has only one solution that is x=9.
Hence, the answer is 9.
Note: If we would have tried to solve the question any other way it would have been unnecessarily long. If we would have tried to first divide the terms on LHS and RHS and then proceeded it would also have been rather difficult. Someone may also try to factorise the quadratic equation on the LHS first. As we know factorisation also takes time if we cannot easily see how to split the coefficient of x so that it fits for factorisation. Even after we factorise we again would have to multiply if nothing cancels out. We also saved time where we cancelled out $10{{x}^{3}}$ , $-50{{x}^{2}}$ , $-75x$ , $15{{x}^{2}}$ .
If we had calculated rather than directly cancelling it would have taken twice the time than how we did it. These are some tips to save time when doing these types of questions. The question was set like this to follow this method.
Complete step by step answer:
We have the equation- $\dfrac{10{{x}^{2}}+15x+63}{5{{x}^{2}}-25x+12}=\dfrac{2x+3}{x-5}$
After cross-multiplying we get,
$(x-5)(10{{x}^{2}}+15x+63)=(2x+3)(5{{x}^{2}}-25x+12)$
After multiplying the terms in LHS and RHS and writing them separately we get,
$10{{x}^{3}}+15{{x}^{2}}+63x-50{{x}^{2}}-75x-315=10{{x}^{3}}-50{{x}^{2}}+24x+15{{x}^{2}}-75x+36$
We see that the terms present in both LHS and RHS are- $10{{x}^{3}}$ , $-50{{x}^{2}}$ , $-75x$ , $15{{x}^{2}}$
Therefore the following terms cancels out and we are left with
$63x-315=24x+36$
Subtracting 24x both sides we have
$39x-315=36$
Adding 315 both sides we have,
$\begin{align}
& 39x=351 \\
& \Rightarrow x=\dfrac{351}{39} \\
& \Rightarrow x=9 \\
\end{align}$
Therefore, the above question has only one solution that is x=9.
Hence, the answer is 9.
Note: If we would have tried to solve the question any other way it would have been unnecessarily long. If we would have tried to first divide the terms on LHS and RHS and then proceeded it would also have been rather difficult. Someone may also try to factorise the quadratic equation on the LHS first. As we know factorisation also takes time if we cannot easily see how to split the coefficient of x so that it fits for factorisation. Even after we factorise we again would have to multiply if nothing cancels out. We also saved time where we cancelled out $10{{x}^{3}}$ , $-50{{x}^{2}}$ , $-75x$ , $15{{x}^{2}}$ .
If we had calculated rather than directly cancelling it would have taken twice the time than how we did it. These are some tips to save time when doing these types of questions. The question was set like this to follow this method.
Recently Updated Pages
Questions & Answers - Ask your doubts

A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE

