
Solve by cross-multiplication method:
$\left( {a - b} \right)x + \left( {a + b} \right)y = 2\left( {{a^2} - {b^2}} \right)$
$\left( {a + b} \right)x - \left( {a - b} \right)y = 4ab$
A) $x = \left( {a - b} \right)$ and $y = \left( {2a - b} \right)$
B) $x = \left( {a + b} \right)$ and $y = \left( {a - b} \right)$
C) $x = \left( {2a + 5b} \right)$ and $y = \left( {a - {b^2}} \right)$
D) $x = \left( {2a - 3b} \right)$ and $y = \left( {3a - b} \right)$
Answer
490.5k+ views
Hint: To solve the problem first we have to take all the terms to the left hand side of the equations and convert them in the form,
${a_1}x + {b_1}y + {c_1} = 0$
${a_2}x + {b_2}y + {c_2} = 0$
Then, we are to apply the formula of cross multiplication, that is,
$\dfrac{x}{{{b_1}{c_2} - {b_2}{c_1}}} = \dfrac{y}{{{c_1}{a_2} - {c_2}{a_1}}} = \dfrac{1}{{{a_1}{b_2} - {a_2}{b_1}}}$
Then, equating the $x$ term and the constant term we will get the value of $x$. Similarly, equating the $y$ term and the constant term we will get the value of $y$.
Complete step by step solution:
The two given equations are,
$\left( {a - b} \right)x + \left( {a + b} \right)y = 2\left( {{a^2} - {b^2}} \right)$
$\left( {a + b} \right)x - \left( {a - b} \right)y = 4ab$
We can rewrite the equations in the form suitable for cross-multiplication as,
$\left( {a - b} \right)x + \left( {a + b} \right)y - 2\left( {{a^2} - {b^2}} \right) = 0 - - - \left( 1 \right)$
$\left( {a + b} \right)x - \left( {a - b} \right)y - 4ab = 0 - - - \left( 2 \right)$
[Taking all the terms to the left hand side]
The general form of equations for cross-multiplication is,
${a_1}x + {b_1}y + {c_1} = 0$
${a_2}x + {b_2}y + {c_2} = 0$
Comparing the equations $\left( 1 \right)$ and $\left( 2 \right)$ to the general equations, we get,
${a_1} = \left( {a - b} \right),{b_1} = \left( {a + b} \right),{c_1} = - 2\left( {{a^2} - {b^2}} \right)$
${a_2} = \left( {a + b} \right),{b_2} = - \left( {a - b} \right),{c_2} = - 4ab$
The formula of cross-multiplication is,
$\dfrac{x}{{{b_1}{c_2} - {b_2}{c_1}}} = \dfrac{y}{{{c_1}{a_2} - {c_2}{a_1}}} = \dfrac{1}{{{a_1}{b_2} - {a_2}{b_1}}}$
Substituting the values in the formula, we get,
$\dfrac{x}{{\left( {a + b} \right)\left( { - 4ab} \right) - \left( { - \left( {a - b} \right)} \right)\left( { - 2\left( {{a^2} - {b^2}} \right)} \right)}} = \dfrac{y}{{\left( { - 2\left( {{a^2} - {b^2}} \right)} \right)\left( {a + b} \right) - \left( { - 4ab} \right)\left( {a - b} \right)}} = \dfrac{1}{{\left( {a - b} \right)\left( { - \left( {a - b} \right)} \right) - \left( {a + b} \right)\left( {a + b} \right)}}$$ \Rightarrow \dfrac{x}{{ - 4ab\left( {a + b} \right) - 2\left( {a + b} \right){{\left( {a - b} \right)}^2}}} = \dfrac{y}{{4ab\left( {a - b} \right) - 2\left( {a + b} \right){{\left( {a - b} \right)}^2}}} = \dfrac{1}{{ - {{\left( {a - b} \right)}^2} - {{\left( {a + b} \right)}^2}}}$
[Using, $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$]
Taking terms common in the denominator, we get,
$ \Rightarrow \dfrac{x}{{ - \left( {a + b} \right)\left( {4ab + 2{{\left( {a - b} \right)}^2}} \right)}} = \dfrac{y}{{\left( {a - b} \right)\left( {4ab - 2\left( {a + b} \right)\left( {a + b} \right)} \right)}} = \dfrac{1}{{ - \left( {{{\left( {a - b} \right)}^2} + {{\left( {a + b} \right)}^2}} \right)}}$
Now, simplifying, we get,
$ \Rightarrow \dfrac{x}{{ - \left( {a + b} \right)\left( {4ab + 2\left( {{a^2} - 2ab + {b^2}} \right)} \right)}} = \dfrac{y}{{\left( {a - b} \right)\left( {4ab - 2{{\left( {a + b} \right)}^2}} \right)}} = \dfrac{1}{{ - \left( {\left( {{a^2} - 2ab + {b^2}} \right) + \left( {{a^2} + {b^2} + 2ab} \right)} \right)}}$
[Using, \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]]
Now, opening the brackets and simplifying, we get,
$ \Rightarrow \dfrac{x}{{ - \left( {a + b} \right)\left( {4ab + 2{a^2} - 4ab + 2{b^2}} \right)}} = \dfrac{y}{{\left( {a - b} \right)\left( {4ab - 2{a^2} - 2{b^2} - 4ab} \right)}} = \dfrac{1}{{ - \left( {2\left( {{a^2} + {b^2}} \right)} \right)}}$
[Using, \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]]
$ \Rightarrow \dfrac{x}{{ - \left( {a + b} \right)\left( {2{a^2} + 2{b^2}} \right)}} = \dfrac{y}{{\left( {a - b} \right)\left( { - 2{a^2} - 2{b^2}} \right)}} = \dfrac{1}{{ - \left( {2\left( {{a^2} + {b^2}} \right)} \right)}}$
Now, equating the $x$ term and the constant term, we get,
$\dfrac{x}{{ - \left( {a + b} \right)\left( {2{a^2} + 2{b^2}} \right)}} = \dfrac{1}{{ - \left( {2\left( {{a^2} + {b^2}} \right)} \right)}}$
Taking $2$ common in the denominator of the $x$ term, we get,
$ \Rightarrow \dfrac{x}{{ - 2\left( {a + b} \right)\left( {{a^2} + {b^2}} \right)}} = \dfrac{1}{{ - \left( {2\left( {{a^2} + {b^2}} \right)} \right)}}$
Cancelling the similar terms, we get,
$ \Rightarrow \dfrac{x}{{\left( {a + b} \right)}} = \dfrac{1}{1}$
Multiplying both sides with $\left( {a + b} \right)$, we get,
$ \Rightarrow x = \left( {a + b} \right)$
Now, equating the $y$ term and the constant term, we get,
$\dfrac{y}{{\left( {a - b} \right)\left( { - 2{a^2} - 2{b^2}} \right)}} = \dfrac{1}{{ - \left( {2\left( {{a^2} + {b^2}} \right)} \right)}}$
Taking $ - 2$ common in the denominator of the $y$ term, we get,
$ \Rightarrow \dfrac{y}{{ - 2\left( {a - b} \right)\left( {{a^2} + {b^2}} \right)}} = \dfrac{1}{{ - \left( {2\left( {{a^2} + {b^2}} \right)} \right)}}$
Cancelling the similar terms, we get,
$ \Rightarrow \dfrac{y}{{\left( {a - b} \right)}} = \dfrac{1}{1}$
Multiplying both sides with $\left( {a - b} \right)$, we get,
$ \Rightarrow y = \left( {a - b} \right)$
Therefore, the required values are,
$x = \left( {a + b} \right),y = \left( {a - b} \right)$
The correct option is B.
So, the correct answer is “Option B”.
Note: -Cross multiplication is another method of solving two linear equations in two variables other than elimination method and substitution method. The same question can also be solved by elimination or substitution method, but as mentioned in the question, we have to solve by cross-multiplication method.
${a_1}x + {b_1}y + {c_1} = 0$
${a_2}x + {b_2}y + {c_2} = 0$
Then, we are to apply the formula of cross multiplication, that is,
$\dfrac{x}{{{b_1}{c_2} - {b_2}{c_1}}} = \dfrac{y}{{{c_1}{a_2} - {c_2}{a_1}}} = \dfrac{1}{{{a_1}{b_2} - {a_2}{b_1}}}$
Then, equating the $x$ term and the constant term we will get the value of $x$. Similarly, equating the $y$ term and the constant term we will get the value of $y$.
Complete step by step solution:
The two given equations are,
$\left( {a - b} \right)x + \left( {a + b} \right)y = 2\left( {{a^2} - {b^2}} \right)$
$\left( {a + b} \right)x - \left( {a - b} \right)y = 4ab$
We can rewrite the equations in the form suitable for cross-multiplication as,
$\left( {a - b} \right)x + \left( {a + b} \right)y - 2\left( {{a^2} - {b^2}} \right) = 0 - - - \left( 1 \right)$
$\left( {a + b} \right)x - \left( {a - b} \right)y - 4ab = 0 - - - \left( 2 \right)$
[Taking all the terms to the left hand side]
The general form of equations for cross-multiplication is,
${a_1}x + {b_1}y + {c_1} = 0$
${a_2}x + {b_2}y + {c_2} = 0$
Comparing the equations $\left( 1 \right)$ and $\left( 2 \right)$ to the general equations, we get,
${a_1} = \left( {a - b} \right),{b_1} = \left( {a + b} \right),{c_1} = - 2\left( {{a^2} - {b^2}} \right)$
${a_2} = \left( {a + b} \right),{b_2} = - \left( {a - b} \right),{c_2} = - 4ab$
The formula of cross-multiplication is,
$\dfrac{x}{{{b_1}{c_2} - {b_2}{c_1}}} = \dfrac{y}{{{c_1}{a_2} - {c_2}{a_1}}} = \dfrac{1}{{{a_1}{b_2} - {a_2}{b_1}}}$
Substituting the values in the formula, we get,
$\dfrac{x}{{\left( {a + b} \right)\left( { - 4ab} \right) - \left( { - \left( {a - b} \right)} \right)\left( { - 2\left( {{a^2} - {b^2}} \right)} \right)}} = \dfrac{y}{{\left( { - 2\left( {{a^2} - {b^2}} \right)} \right)\left( {a + b} \right) - \left( { - 4ab} \right)\left( {a - b} \right)}} = \dfrac{1}{{\left( {a - b} \right)\left( { - \left( {a - b} \right)} \right) - \left( {a + b} \right)\left( {a + b} \right)}}$$ \Rightarrow \dfrac{x}{{ - 4ab\left( {a + b} \right) - 2\left( {a + b} \right){{\left( {a - b} \right)}^2}}} = \dfrac{y}{{4ab\left( {a - b} \right) - 2\left( {a + b} \right){{\left( {a - b} \right)}^2}}} = \dfrac{1}{{ - {{\left( {a - b} \right)}^2} - {{\left( {a + b} \right)}^2}}}$
[Using, $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$]
Taking terms common in the denominator, we get,
$ \Rightarrow \dfrac{x}{{ - \left( {a + b} \right)\left( {4ab + 2{{\left( {a - b} \right)}^2}} \right)}} = \dfrac{y}{{\left( {a - b} \right)\left( {4ab - 2\left( {a + b} \right)\left( {a + b} \right)} \right)}} = \dfrac{1}{{ - \left( {{{\left( {a - b} \right)}^2} + {{\left( {a + b} \right)}^2}} \right)}}$
Now, simplifying, we get,
$ \Rightarrow \dfrac{x}{{ - \left( {a + b} \right)\left( {4ab + 2\left( {{a^2} - 2ab + {b^2}} \right)} \right)}} = \dfrac{y}{{\left( {a - b} \right)\left( {4ab - 2{{\left( {a + b} \right)}^2}} \right)}} = \dfrac{1}{{ - \left( {\left( {{a^2} - 2ab + {b^2}} \right) + \left( {{a^2} + {b^2} + 2ab} \right)} \right)}}$
[Using, \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]]
Now, opening the brackets and simplifying, we get,
$ \Rightarrow \dfrac{x}{{ - \left( {a + b} \right)\left( {4ab + 2{a^2} - 4ab + 2{b^2}} \right)}} = \dfrac{y}{{\left( {a - b} \right)\left( {4ab - 2{a^2} - 2{b^2} - 4ab} \right)}} = \dfrac{1}{{ - \left( {2\left( {{a^2} + {b^2}} \right)} \right)}}$
[Using, \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]]
$ \Rightarrow \dfrac{x}{{ - \left( {a + b} \right)\left( {2{a^2} + 2{b^2}} \right)}} = \dfrac{y}{{\left( {a - b} \right)\left( { - 2{a^2} - 2{b^2}} \right)}} = \dfrac{1}{{ - \left( {2\left( {{a^2} + {b^2}} \right)} \right)}}$
Now, equating the $x$ term and the constant term, we get,
$\dfrac{x}{{ - \left( {a + b} \right)\left( {2{a^2} + 2{b^2}} \right)}} = \dfrac{1}{{ - \left( {2\left( {{a^2} + {b^2}} \right)} \right)}}$
Taking $2$ common in the denominator of the $x$ term, we get,
$ \Rightarrow \dfrac{x}{{ - 2\left( {a + b} \right)\left( {{a^2} + {b^2}} \right)}} = \dfrac{1}{{ - \left( {2\left( {{a^2} + {b^2}} \right)} \right)}}$
Cancelling the similar terms, we get,
$ \Rightarrow \dfrac{x}{{\left( {a + b} \right)}} = \dfrac{1}{1}$
Multiplying both sides with $\left( {a + b} \right)$, we get,
$ \Rightarrow x = \left( {a + b} \right)$
Now, equating the $y$ term and the constant term, we get,
$\dfrac{y}{{\left( {a - b} \right)\left( { - 2{a^2} - 2{b^2}} \right)}} = \dfrac{1}{{ - \left( {2\left( {{a^2} + {b^2}} \right)} \right)}}$
Taking $ - 2$ common in the denominator of the $y$ term, we get,
$ \Rightarrow \dfrac{y}{{ - 2\left( {a - b} \right)\left( {{a^2} + {b^2}} \right)}} = \dfrac{1}{{ - \left( {2\left( {{a^2} + {b^2}} \right)} \right)}}$
Cancelling the similar terms, we get,
$ \Rightarrow \dfrac{y}{{\left( {a - b} \right)}} = \dfrac{1}{1}$
Multiplying both sides with $\left( {a - b} \right)$, we get,
$ \Rightarrow y = \left( {a - b} \right)$
Therefore, the required values are,
$x = \left( {a + b} \right),y = \left( {a - b} \right)$
The correct option is B.
So, the correct answer is “Option B”.
Note: -Cross multiplication is another method of solving two linear equations in two variables other than elimination method and substitution method. The same question can also be solved by elimination or substitution method, but as mentioned in the question, we have to solve by cross-multiplication method.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which one of the following groups comprises states class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

A couple went for a picnic They have 5 sons and each class 8 maths CBSE

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


