Answer
Verified
496.8k+ views
Hint:- Write equations in form of \[AX = B\]. Here A is a square matrix and its inverse is $A^{-1}$. Matrix inversion method is applied to non-singular square matrix.
As given in the question to solve the given equations using matrix inversion method,
When there is said to solve using matrix inversion method then we had to,
First of all write the system of equations in the form of \[AX = B\].
Where, A will be a matrix containing coefficients of variables of a given equation.
Where, B will be a matrix containing constant terms of the given equations.
And X will be a matrix containing variables of the given equations.
Let the equations will be,
\[ \Rightarrow ax + by = c\] and \[dx + ey = f\]
Then, \[A = \left[ {\begin{array}{*{20}{c}}
a&b \\
d&e
\end{array}} \right],X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
c \\
f
\end{array}} \right]\]
So, if the given equations be.
\[ \Rightarrow 2x - y = 7\] (1)
\[ \Rightarrow 3x - 2y = 11\] (2)
So, solving equation 1 and 2 using matrix inversion method. We get,
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7 \\
{11}
\end{array}} \right]\] (i.e.) \[AX = B\]
\[ \Rightarrow X = {A^{ - 1}}B\] (3)
Where \[A = \left[ {\begin{array}{*{20}{c}}
a&b \\
d&e
\end{array}} \right];X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
7 \\
{11}
\end{array}} \right]\]
Now, we had to find \[{A^{ - 1}}\].
As, we know that \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A)\].
Where \[\left| A \right|\] is the determinant of \[A\] and,
\[ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right| = 2*( - 2) - (3)*( - 1) = - 1\]
And as we know that for any matrix, \[C = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\].
\[ \Rightarrow adj(C) = \left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]\]
\[ \Rightarrow \]So, \[adj(A) = \left[ {\begin{array}{*{20}{c}}
{ - 2}&1 \\
{ - 3}&2
\end{array}} \right]\]
\[ \Rightarrow \]Hence, \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A) = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
{ - 2}&1 \\
{ - 3}&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right]\]
Now, putting value of \[{A^{ - 1}}\] and \[B\] in the equation 3 we get,
\[
\Rightarrow X = {A^{ - 1}}B = \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
7 \\
{11}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{14 - 11} \\
{21 - 22}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
{ - 1}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
{ - 1}
\end{array}} \right] \\
\]
So, on comparing we get \[x = 3\] and \[y = - 1\].
Note:- Whenever we came up with this type of problem then, first write the given
Linear equations in form of \[AX = B\], And then find the value of \[{A^{ - 1}}\] by using formula
\[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A)\] and then multiply \[{A^{ - 1}}\] by \[B\]. Then you will get required value of the Matrix \[X\], which gives the value of all variables.
As given in the question to solve the given equations using matrix inversion method,
When there is said to solve using matrix inversion method then we had to,
First of all write the system of equations in the form of \[AX = B\].
Where, A will be a matrix containing coefficients of variables of a given equation.
Where, B will be a matrix containing constant terms of the given equations.
And X will be a matrix containing variables of the given equations.
Let the equations will be,
\[ \Rightarrow ax + by = c\] and \[dx + ey = f\]
Then, \[A = \left[ {\begin{array}{*{20}{c}}
a&b \\
d&e
\end{array}} \right],X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
c \\
f
\end{array}} \right]\]
So, if the given equations be.
\[ \Rightarrow 2x - y = 7\] (1)
\[ \Rightarrow 3x - 2y = 11\] (2)
So, solving equation 1 and 2 using matrix inversion method. We get,
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7 \\
{11}
\end{array}} \right]\] (i.e.) \[AX = B\]
\[ \Rightarrow X = {A^{ - 1}}B\] (3)
Where \[A = \left[ {\begin{array}{*{20}{c}}
a&b \\
d&e
\end{array}} \right];X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
7 \\
{11}
\end{array}} \right]\]
Now, we had to find \[{A^{ - 1}}\].
As, we know that \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A)\].
Where \[\left| A \right|\] is the determinant of \[A\] and,
\[ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right| = 2*( - 2) - (3)*( - 1) = - 1\]
And as we know that for any matrix, \[C = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\].
\[ \Rightarrow adj(C) = \left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]\]
\[ \Rightarrow \]So, \[adj(A) = \left[ {\begin{array}{*{20}{c}}
{ - 2}&1 \\
{ - 3}&2
\end{array}} \right]\]
\[ \Rightarrow \]Hence, \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A) = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
{ - 2}&1 \\
{ - 3}&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right]\]
Now, putting value of \[{A^{ - 1}}\] and \[B\] in the equation 3 we get,
\[
\Rightarrow X = {A^{ - 1}}B = \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
7 \\
{11}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{14 - 11} \\
{21 - 22}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
{ - 1}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
{ - 1}
\end{array}} \right] \\
\]
So, on comparing we get \[x = 3\] and \[y = - 1\].
Note:- Whenever we came up with this type of problem then, first write the given
Linear equations in form of \[AX = B\], And then find the value of \[{A^{ - 1}}\] by using formula
\[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A)\] and then multiply \[{A^{ - 1}}\] by \[B\]. Then you will get required value of the Matrix \[X\], which gives the value of all variables.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE