
Solve \[2x - y = 7;{\text{ }}3x - 2y = 11\] by using the matrix inversion method.
Answer
609.6k+ views
Hint:- Write equations in form of \[AX = B\]. Here A is a square matrix and its inverse is $A^{-1}$. Matrix inversion method is applied to non-singular square matrix.
As given in the question to solve the given equations using matrix inversion method,
When there is said to solve using matrix inversion method then we had to,
First of all write the system of equations in the form of \[AX = B\].
Where, A will be a matrix containing coefficients of variables of a given equation.
Where, B will be a matrix containing constant terms of the given equations.
And X will be a matrix containing variables of the given equations.
Let the equations will be,
\[ \Rightarrow ax + by = c\] and \[dx + ey = f\]
Then, \[A = \left[ {\begin{array}{*{20}{c}}
a&b \\
d&e
\end{array}} \right],X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
c \\
f
\end{array}} \right]\]
So, if the given equations be.
\[ \Rightarrow 2x - y = 7\] (1)
\[ \Rightarrow 3x - 2y = 11\] (2)
So, solving equation 1 and 2 using matrix inversion method. We get,
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7 \\
{11}
\end{array}} \right]\] (i.e.) \[AX = B\]
\[ \Rightarrow X = {A^{ - 1}}B\] (3)
Where \[A = \left[ {\begin{array}{*{20}{c}}
a&b \\
d&e
\end{array}} \right];X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
7 \\
{11}
\end{array}} \right]\]
Now, we had to find \[{A^{ - 1}}\].
As, we know that \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A)\].
Where \[\left| A \right|\] is the determinant of \[A\] and,
\[ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right| = 2*( - 2) - (3)*( - 1) = - 1\]
And as we know that for any matrix, \[C = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\].
\[ \Rightarrow adj(C) = \left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]\]
\[ \Rightarrow \]So, \[adj(A) = \left[ {\begin{array}{*{20}{c}}
{ - 2}&1 \\
{ - 3}&2
\end{array}} \right]\]
\[ \Rightarrow \]Hence, \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A) = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
{ - 2}&1 \\
{ - 3}&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right]\]
Now, putting value of \[{A^{ - 1}}\] and \[B\] in the equation 3 we get,
\[
\Rightarrow X = {A^{ - 1}}B = \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
7 \\
{11}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{14 - 11} \\
{21 - 22}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
{ - 1}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
{ - 1}
\end{array}} \right] \\
\]
So, on comparing we get \[x = 3\] and \[y = - 1\].
Note:- Whenever we came up with this type of problem then, first write the given
Linear equations in form of \[AX = B\], And then find the value of \[{A^{ - 1}}\] by using formula
\[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A)\] and then multiply \[{A^{ - 1}}\] by \[B\]. Then you will get required value of the Matrix \[X\], which gives the value of all variables.
As given in the question to solve the given equations using matrix inversion method,
When there is said to solve using matrix inversion method then we had to,
First of all write the system of equations in the form of \[AX = B\].
Where, A will be a matrix containing coefficients of variables of a given equation.
Where, B will be a matrix containing constant terms of the given equations.
And X will be a matrix containing variables of the given equations.
Let the equations will be,
\[ \Rightarrow ax + by = c\] and \[dx + ey = f\]
Then, \[A = \left[ {\begin{array}{*{20}{c}}
a&b \\
d&e
\end{array}} \right],X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
c \\
f
\end{array}} \right]\]
So, if the given equations be.
\[ \Rightarrow 2x - y = 7\] (1)
\[ \Rightarrow 3x - 2y = 11\] (2)
So, solving equation 1 and 2 using matrix inversion method. We get,
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7 \\
{11}
\end{array}} \right]\] (i.e.) \[AX = B\]
\[ \Rightarrow X = {A^{ - 1}}B\] (3)
Where \[A = \left[ {\begin{array}{*{20}{c}}
a&b \\
d&e
\end{array}} \right];X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
7 \\
{11}
\end{array}} \right]\]
Now, we had to find \[{A^{ - 1}}\].
As, we know that \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A)\].
Where \[\left| A \right|\] is the determinant of \[A\] and,
\[ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right| = 2*( - 2) - (3)*( - 1) = - 1\]
And as we know that for any matrix, \[C = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\].
\[ \Rightarrow adj(C) = \left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]\]
\[ \Rightarrow \]So, \[adj(A) = \left[ {\begin{array}{*{20}{c}}
{ - 2}&1 \\
{ - 3}&2
\end{array}} \right]\]
\[ \Rightarrow \]Hence, \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A) = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
{ - 2}&1 \\
{ - 3}&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right]\]
Now, putting value of \[{A^{ - 1}}\] and \[B\] in the equation 3 we get,
\[
\Rightarrow X = {A^{ - 1}}B = \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
7 \\
{11}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{14 - 11} \\
{21 - 22}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
{ - 1}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
{ - 1}
\end{array}} \right] \\
\]
So, on comparing we get \[x = 3\] and \[y = - 1\].
Note:- Whenever we came up with this type of problem then, first write the given
Linear equations in form of \[AX = B\], And then find the value of \[{A^{ - 1}}\] by using formula
\[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A)\] and then multiply \[{A^{ - 1}}\] by \[B\]. Then you will get required value of the Matrix \[X\], which gives the value of all variables.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

