
Solution of the equation \[{{\tan }^{^{-1}}}(x-1)+{{\tan }^{^{-1}}}x+{{\tan }^{^{-1}}}(x+1)={{\tan }^{^{-1}}}3x\] is:
A.x = 0
B.$x=\pm \dfrac{1}{2}$
C.$x=\pm \dfrac{1}{3}$
D.None of this.
Answer
615.9k+ views
Hint: Shift the term ‘\[{{\tan }^{-1}}x\]’ on the right hand side of the equation and the use the formulae \[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\] and \[{{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left[ \dfrac{x-y}{1+xy} \right]\] to simplify the equation to get the value of ‘x’.
Complete step-by-step answer:
To solve the given problem we will write the given equation first, therefore,
\[{{\tan }^{^{-1}}}(x-1)+{{\tan }^{^{-1}}}x+{{\tan }^{^{-1}}}(x+1)={{\tan }^{^{-1}}}3x\]
By rearranging the above equation we will get,
\[{{\tan }^{^{-1}}}(x-1)+{{\tan }^{^{-1}}}(x+1)+{{\tan }^{^{-1}}}x={{\tan }^{^{-1}}}3x\]
To proceed further in the solution we should know the formula given below,
Formula:
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]
If we use the above formula for the first two terms of the given equation we will get,
\[\Rightarrow {{\tan }^{-1}}\left[ \dfrac{\left( x-1 \right)+\left( x+1 \right)}{1-\left( x-1 \right)\left( x+1 \right)} \right]+{{\tan }^{^{-1}}}x={{\tan }^{^{-1}}}3x\]
By simplifying the above equation we will get,
\[\Rightarrow {{\tan }^{-1}}\left[ \dfrac{x-1+x+1}{1-\left( x-1 \right)\left( x+1 \right)} \right]+{{\tan }^{^{-1}}}x={{\tan }^{^{-1}}}3x\]
To proceed further in the solution we should know the formula given below,
Formula:
\[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\]
If we use the above formula in the given equation we will get,
\[\Rightarrow {{\tan }^{-1}}\left[ \dfrac{2x}{1-\left( {{x}^{2}}-{{1}^{2}} \right)} \right]+{{\tan }^{^{-1}}}x={{\tan }^{^{-1}}}3x\]
Further simplification in the above equation will give,
\[\Rightarrow {{\tan }^{-1}}\left[ \dfrac{2x}{1-{{x}^{2}}+1} \right]+{{\tan }^{^{-1}}}x={{\tan }^{^{-1}}}3x\]
If we shift the second term of the above equation on the right hand side of the equation we will get,
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right)={{\tan }^{^{-1}}}3x-{{\tan }^{^{-1}}}x\] ……………………………………….. (1)
Now before we solve further we should know the formula given below,
Formula:
\[{{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left[ \dfrac{x-y}{1+xy} \right]\]
If we use the above formula on the right hand side of the equation we will get,
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right)={{\tan }^{-1}}\left[ \dfrac{3x-x}{1+\left( 3x \right)\times \left( x \right)} \right]\]
If we simplify the above equation we will get,
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right)={{\tan }^{-1}}\left[ \dfrac{2x}{1+3{{x}^{2}}} \right]\]
Taking ‘tan’ on the both sides of the equation will give,
\[\Rightarrow \tan \left[ {{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right) \right]=\tan \left[ {{\tan }^{-1}}\left[ \dfrac{2x}{1+3{{x}^{2}}} \right] \right]\] ……………………………….. (2)
Now to proceed further in the solution we should know the formula given below,
Formula:
\[\tan \left( {{\tan }^{-1}}x \right)=x\]
If we use the above formula in equation (2) we will get,
\[\Rightarrow \dfrac{2x}{2-{{x}^{2}}}=\dfrac{2x}{1+3{{x}^{2}}}\]
By doing cross multiplication in the above equation we will get,
\[\Rightarrow 2x\left( 1+3{{x}^{2}} \right)=2x\left( 2-{{x}^{2}} \right)\]
If we shift the ‘2x’ on the right had side of the equation we will get,
\[\Rightarrow \left( 1+3{{x}^{2}} \right)=\dfrac{2x\left( 2-{{x}^{2}} \right)}{2x}\]
By simplifying the above equation we will get,
\[\Rightarrow 1+3{{x}^{2}}=2-{{x}^{2}}\]
If we shift the ‘\[-{{x}^{2}}\]’ on the left hand side and 1 on the right hand side of the equation we will get,
\[\Rightarrow {{x}^{2}}+3{{x}^{2}}=2-1\]
If we simplify the above equation we will get,
\[\Rightarrow 4{{x}^{2}}=1\]
Further simplification in the above equation will give,
\[\Rightarrow {{x}^{2}}=\dfrac{1}{4}\]
Taking square roots on both sides of the above equation we will get,
\[\Rightarrow x=\pm \dfrac{1}{2}\]
Therefore the solution of the equation \[{{\tan }^{^{-1}}}(x-1)+{{\tan }^{^{-1}}}x+{{\tan }^{^{-1}}}(x+1)={{\tan }^{^{-1}}}3x\] is \[x=\pm \dfrac{1}{2}\].
Therefore the correct answer is option (b).
Note: At the step \[\tan \left[ {{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right) \right]=\tan \left[ {{\tan }^{-1}}\left[ \dfrac{2x}{1+3{{x}^{2}}} \right] \right]\] you can directly cancel \[{{\tan }^{-1}}\] from both sides of the equation without taking ‘tan’ on both sides if you are solving it in competitive exam. But in a descriptive answer if you ignore this step then there may be marked reduction.
Complete step-by-step answer:
To solve the given problem we will write the given equation first, therefore,
\[{{\tan }^{^{-1}}}(x-1)+{{\tan }^{^{-1}}}x+{{\tan }^{^{-1}}}(x+1)={{\tan }^{^{-1}}}3x\]
By rearranging the above equation we will get,
\[{{\tan }^{^{-1}}}(x-1)+{{\tan }^{^{-1}}}(x+1)+{{\tan }^{^{-1}}}x={{\tan }^{^{-1}}}3x\]
To proceed further in the solution we should know the formula given below,
Formula:
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]
If we use the above formula for the first two terms of the given equation we will get,
\[\Rightarrow {{\tan }^{-1}}\left[ \dfrac{\left( x-1 \right)+\left( x+1 \right)}{1-\left( x-1 \right)\left( x+1 \right)} \right]+{{\tan }^{^{-1}}}x={{\tan }^{^{-1}}}3x\]
By simplifying the above equation we will get,
\[\Rightarrow {{\tan }^{-1}}\left[ \dfrac{x-1+x+1}{1-\left( x-1 \right)\left( x+1 \right)} \right]+{{\tan }^{^{-1}}}x={{\tan }^{^{-1}}}3x\]
To proceed further in the solution we should know the formula given below,
Formula:
\[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\]
If we use the above formula in the given equation we will get,
\[\Rightarrow {{\tan }^{-1}}\left[ \dfrac{2x}{1-\left( {{x}^{2}}-{{1}^{2}} \right)} \right]+{{\tan }^{^{-1}}}x={{\tan }^{^{-1}}}3x\]
Further simplification in the above equation will give,
\[\Rightarrow {{\tan }^{-1}}\left[ \dfrac{2x}{1-{{x}^{2}}+1} \right]+{{\tan }^{^{-1}}}x={{\tan }^{^{-1}}}3x\]
If we shift the second term of the above equation on the right hand side of the equation we will get,
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right)={{\tan }^{^{-1}}}3x-{{\tan }^{^{-1}}}x\] ……………………………………….. (1)
Now before we solve further we should know the formula given below,
Formula:
\[{{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left[ \dfrac{x-y}{1+xy} \right]\]
If we use the above formula on the right hand side of the equation we will get,
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right)={{\tan }^{-1}}\left[ \dfrac{3x-x}{1+\left( 3x \right)\times \left( x \right)} \right]\]
If we simplify the above equation we will get,
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right)={{\tan }^{-1}}\left[ \dfrac{2x}{1+3{{x}^{2}}} \right]\]
Taking ‘tan’ on the both sides of the equation will give,
\[\Rightarrow \tan \left[ {{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right) \right]=\tan \left[ {{\tan }^{-1}}\left[ \dfrac{2x}{1+3{{x}^{2}}} \right] \right]\] ……………………………….. (2)
Now to proceed further in the solution we should know the formula given below,
Formula:
\[\tan \left( {{\tan }^{-1}}x \right)=x\]
If we use the above formula in equation (2) we will get,
\[\Rightarrow \dfrac{2x}{2-{{x}^{2}}}=\dfrac{2x}{1+3{{x}^{2}}}\]
By doing cross multiplication in the above equation we will get,
\[\Rightarrow 2x\left( 1+3{{x}^{2}} \right)=2x\left( 2-{{x}^{2}} \right)\]
If we shift the ‘2x’ on the right had side of the equation we will get,
\[\Rightarrow \left( 1+3{{x}^{2}} \right)=\dfrac{2x\left( 2-{{x}^{2}} \right)}{2x}\]
By simplifying the above equation we will get,
\[\Rightarrow 1+3{{x}^{2}}=2-{{x}^{2}}\]
If we shift the ‘\[-{{x}^{2}}\]’ on the left hand side and 1 on the right hand side of the equation we will get,
\[\Rightarrow {{x}^{2}}+3{{x}^{2}}=2-1\]
If we simplify the above equation we will get,
\[\Rightarrow 4{{x}^{2}}=1\]
Further simplification in the above equation will give,
\[\Rightarrow {{x}^{2}}=\dfrac{1}{4}\]
Taking square roots on both sides of the above equation we will get,
\[\Rightarrow x=\pm \dfrac{1}{2}\]
Therefore the solution of the equation \[{{\tan }^{^{-1}}}(x-1)+{{\tan }^{^{-1}}}x+{{\tan }^{^{-1}}}(x+1)={{\tan }^{^{-1}}}3x\] is \[x=\pm \dfrac{1}{2}\].
Therefore the correct answer is option (b).
Note: At the step \[\tan \left[ {{\tan }^{-1}}\left( \dfrac{2x}{2-{{x}^{2}}} \right) \right]=\tan \left[ {{\tan }^{-1}}\left[ \dfrac{2x}{1+3{{x}^{2}}} \right] \right]\] you can directly cancel \[{{\tan }^{-1}}\] from both sides of the equation without taking ‘tan’ on both sides if you are solving it in competitive exam. But in a descriptive answer if you ignore this step then there may be marked reduction.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

