
Solution of the differential equation $\left( {\cos x} \right)dy = y\left( {\sin x - y} \right)dx,0 < x < \dfrac{\pi }{2}$ is:
A) $y\sec x = \tan x + c$
B) $y\tan x = \sec x + c$
C) $\tan x = \left( {\sec x + c} \right)y$
D) $\sec x = \left( {\tan x + c} \right)y$
Answer
577.2k+ views
Hint: Write the equation in the form of $\dfrac{{dy}}{{dx}} + f\left( x \right) \times y = g\left( x \right)$ and then find the integrating factor
$IF = {e^{\int {f\left( x \right)dx} }}$ and we know the general equation will become
$\left( {IF} \right)y = \int {\left( {IF} \right)g\left( x \right)dx + c} $
Complete step-by-step answer:
Here we are given a differential equation
$\left( {\cos x} \right)dy = y\left( {\sin x - y} \right)dx$
So, we arrange it in the form of $\dfrac{{dy}}{{dx}} + f\left( x \right) \times y = g\left( x \right)$.
So, we get,
$\dfrac{{dy}}{{dx}} = \dfrac{{y\sin x - {y^2}}}{{\cos x}}$
So, this cannot be in the form of $\dfrac{{dy}}{{dx}} + f\left( x \right) \times y = g\left( x \right)$. If we divide by ${y^2}$ both side,
$\dfrac{1}{{{y^2}}}\dfrac{{dy}}{{dx}} = \dfrac{1}{y}\dfrac{{\sin x}}{{\cos x}} - \dfrac{1}{{\cos x}}$
$\dfrac{1}{{{y^2}}}\dfrac{{dy}}{{dx}} - \dfrac{1}{y} \times \tan x = - \sec x$ (1)
Now we can assume that $ - \dfrac{1}{y} = t$
Upon differentiation with respect to $x$, we get
$\dfrac{1}{{{y^2}}}\dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}}$
Now we can replace, $\dfrac{1}{{{y^2}}}\dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}}$ and $ - \dfrac{1}{y} = t$ in equation (1)
So, we get
$\dfrac{{dt}}{{dx}} + t\tan x = - \sec x$
So we get in the form of $\dfrac{{dy}}{{dx}} + f\left( x \right) \times y = g\left( x \right)$.
So, now we need to find the integrating factor.
$
IF = {e^{\int {f\left( x \right)dx} }} \\
{\text{Here, }}f\left( x \right) = \tan x \\
IF = {e^{\int {\tan xdx} }} = {e^{{{\log }_e}\left( {\sec x} \right)}} = \sec x \\
{\text{so, here we got }}IF = \sec x \\
$
Now the general equation will become
$\left( {IF} \right)y = \int {\left( {IF} \right)g\left( x \right)dx + c} $
Here replace $y$ by $t$
$
\left( {\sec x} \right)t = \int { - \sec x \times \sec xdx} + c \\
\left( {\sec x} \right)t = - \int {{{\sec }^2}xdx} + c \\
\\
$
We know that $\int {{{\sec }^2}xdx} = \tan x$
So,
$t\left( {\sec x} \right) = - \tan x + c$
And we know $ - \dfrac{1}{y} = t$
$
\dfrac{{\sec x}}{y} = \tan x + c \\
\sec x = \left( {\tan x + c} \right)y \\
$
So, option D is correct.
Note: Here we can use alternative method, we are given $\left( {\cos x} \right)dy = y\left( {\sin x - y} \right)dx$
$ \Rightarrow \cos xdy - y\sin xdx = - {y^2}dx$
If we differentiate $d\left( {y\cos x} \right) = \cos xdy - y\sin xdx$
So, $d\left( {y\cos x} \right) = - {y^2}dx$
Now multiplying and dividing by ${\cos ^2}x$
$
\Rightarrow d\left( {y\cos x} \right) = \dfrac{{ - {y^2}{{\cos }^2}x}}{{{{\cos }^2}x}}dx \\
\dfrac{{d\left( {y\cos x} \right)}}{{{y^2}{{\cos }^2}x}} = - \dfrac{{dx}}{{{{\cos }^2}x}} \\
$
Integrating both sides,
$
\int {\dfrac{1}{{{{\left( {y\cos x} \right)}^2}}}d\left( {y\cos x} \right)} = - \int {{{\sec }^2}xdx} \\
- \dfrac{1}{{y\cos x}} = - \tan x + c \\
\sec x = \left( {\tan x + c} \right)y \\
$
$IF = {e^{\int {f\left( x \right)dx} }}$ and we know the general equation will become
$\left( {IF} \right)y = \int {\left( {IF} \right)g\left( x \right)dx + c} $
Complete step-by-step answer:
Here we are given a differential equation
$\left( {\cos x} \right)dy = y\left( {\sin x - y} \right)dx$
So, we arrange it in the form of $\dfrac{{dy}}{{dx}} + f\left( x \right) \times y = g\left( x \right)$.
So, we get,
$\dfrac{{dy}}{{dx}} = \dfrac{{y\sin x - {y^2}}}{{\cos x}}$
So, this cannot be in the form of $\dfrac{{dy}}{{dx}} + f\left( x \right) \times y = g\left( x \right)$. If we divide by ${y^2}$ both side,
$\dfrac{1}{{{y^2}}}\dfrac{{dy}}{{dx}} = \dfrac{1}{y}\dfrac{{\sin x}}{{\cos x}} - \dfrac{1}{{\cos x}}$
$\dfrac{1}{{{y^2}}}\dfrac{{dy}}{{dx}} - \dfrac{1}{y} \times \tan x = - \sec x$ (1)
Now we can assume that $ - \dfrac{1}{y} = t$
Upon differentiation with respect to $x$, we get
$\dfrac{1}{{{y^2}}}\dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}}$
Now we can replace, $\dfrac{1}{{{y^2}}}\dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}}$ and $ - \dfrac{1}{y} = t$ in equation (1)
So, we get
$\dfrac{{dt}}{{dx}} + t\tan x = - \sec x$
So we get in the form of $\dfrac{{dy}}{{dx}} + f\left( x \right) \times y = g\left( x \right)$.
So, now we need to find the integrating factor.
$
IF = {e^{\int {f\left( x \right)dx} }} \\
{\text{Here, }}f\left( x \right) = \tan x \\
IF = {e^{\int {\tan xdx} }} = {e^{{{\log }_e}\left( {\sec x} \right)}} = \sec x \\
{\text{so, here we got }}IF = \sec x \\
$
Now the general equation will become
$\left( {IF} \right)y = \int {\left( {IF} \right)g\left( x \right)dx + c} $
Here replace $y$ by $t$
$
\left( {\sec x} \right)t = \int { - \sec x \times \sec xdx} + c \\
\left( {\sec x} \right)t = - \int {{{\sec }^2}xdx} + c \\
\\
$
We know that $\int {{{\sec }^2}xdx} = \tan x$
So,
$t\left( {\sec x} \right) = - \tan x + c$
And we know $ - \dfrac{1}{y} = t$
$
\dfrac{{\sec x}}{y} = \tan x + c \\
\sec x = \left( {\tan x + c} \right)y \\
$
So, option D is correct.
Note: Here we can use alternative method, we are given $\left( {\cos x} \right)dy = y\left( {\sin x - y} \right)dx$
$ \Rightarrow \cos xdy - y\sin xdx = - {y^2}dx$
If we differentiate $d\left( {y\cos x} \right) = \cos xdy - y\sin xdx$
So, $d\left( {y\cos x} \right) = - {y^2}dx$
Now multiplying and dividing by ${\cos ^2}x$
$
\Rightarrow d\left( {y\cos x} \right) = \dfrac{{ - {y^2}{{\cos }^2}x}}{{{{\cos }^2}x}}dx \\
\dfrac{{d\left( {y\cos x} \right)}}{{{y^2}{{\cos }^2}x}} = - \dfrac{{dx}}{{{{\cos }^2}x}} \\
$
Integrating both sides,
$
\int {\dfrac{1}{{{{\left( {y\cos x} \right)}^2}}}d\left( {y\cos x} \right)} = - \int {{{\sec }^2}xdx} \\
- \dfrac{1}{{y\cos x}} = - \tan x + c \\
\sec x = \left( {\tan x + c} \right)y \\
$
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

