Answer

Verified

426.3k+ views

**Hint:**In the above question we are asked to determine the temperature of the surface of the Sun. First we will determine the total power radiated by the Sun at the position where the Earth is located with respect to the sun. Further we will use Stefan’s law of Power in order to determine the temperature on the surface of the Sun.

**Formula used:**

$P={{S}_{\circ }}4\pi {{d}^{2}}$

$P=\sigma A{{T}^{4}}$

**Complete step by step answer:**

To begin with let us first determine the power radiated by the sun on the Earth. Let us say the distance between the Sun and the Earth is ${R_ \circ }$ . If the solar constant ${S_ \circ }$ is the solar constant, then the Power P is equal to,

$P = {S_ \circ }4\pi {R_ \circ }^2...(1)$

If T is the temperature of the Sun and A is its surface area, then the Power radiated by the sun is equal to by Stefan’s law the power radiated by the sun is given by,

$P = \sigma A{T^4}$

If ${R_S}$ is the radius of the Sun, then we can write the above expression as,

$P = \sigma (4\pi {R_S}^2){T^4}...(2)$

Equating equation 1 and 2 we get,

$\eqalign{

& P = {S_ \circ }4\pi {R_ \circ }^2 = \sigma (4\pi {R_S}^2){T^4} \cr

& \Rightarrow {T^4} = \dfrac{{{S_ \circ }4\pi {R_ \circ }^2}}{{\sigma 4\pi {R_S}^2}} \cr

& \Rightarrow T = {\left( {\dfrac{{{S_ \circ }{R_ \circ }^2}}{{\sigma {R_S}^2}}} \right)^{1/4}} \cr} $

Now substituting the required quantities in the above expression, the temperature of the surface of the Sun we get as,

$\eqalign{

& T = {\left( {\dfrac{{1340w/{m^2}{{(1.5 \times {{10}^{11}}m)}^2}}}{{5.67 \times {{10}^{ - 8}}W{m^{ - 2}}{K^4}{{(7 \times {{10}^8}m)}^2}}}} \right)^{1/4}} \cr

& \Rightarrow T = {\left( {\dfrac{{1340 \times 2.25 \times {{10}^{22}}}}{{5.67 \times {{10}^{ - 8}} \times 49 \times {{10}^{16}}m}}} \right)^{1/4}} \cr

& \therefore T = 5775.8{\text{ }}K \cr} $

**Note:**$\sigma $ is a universal constant called the Stefan-Boltzmann constant. This is basically due to the fact that the relation for power radiated by the black body was first experimentally deduced by Stefan and later proved theoretically by Boltzmann. IF in a case if a body is not a perfectly black body and has some emissivity $\in $ , then the above relation for power becomes $P=\in \sigma A{{T}^{4}}$ . It is also to be noted that energy radiated also depends on the temperature of the enclosure of the body which radiates the energy.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

How do you graph the function fx 4x class 9 maths CBSE

Which are the Top 10 Largest Countries of the World?

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

The largest tea producing country in the world is A class 10 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE