
Simplify the following:
\[(i)\]\[(x + 6)(x + 4)(x - 2)\]
\[(ii)\]\[(x - 6)(x - 4)(x + 2)\]
\[(iii)\]\[(x + 6)(x - 4)(x - 2)\]
\[(iv)\]\[(x - 6)(x + 4)(x - 2)\]
Answer
478.5k+ views
Hint: We are provided a set of questions and we have to simplify them one by one.
In order to solve this question, we are going to use identity \[\left( {x + a} \right)\left( {x + b} \right)\left( {x + c} \right) = {x^3} + \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x + abc\]
Therefore, \[\left( {x + a} \right)\left( {x + b} \right)\left( {x + c} \right) = \]\[{x^3}\]+ (Sum of the constant term) \[{x^2}\]+ (Sum of the constant term taken two at a time) \[x + \] product of constant terms.
We can also simplify using simple distribution and algebraic properties. We will multiply the first two terms first and then with the third term. We can use any method.
Complete answer:
We will use the above identity to simplify these question
\[(i)\]\[(x + 6)(x + 4)(x - 2)\]
Using identity:
\[\left( {x + a} \right)\left( {x + b} \right)\left( {x + c} \right) = {x^3} + \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x + abc\]
Here, \[a = 6\] \[b = 4\]and \[c = - 2\]
Substituting the value of \[a\]\[,\]\[b\] and \[c\]in the above identity we get
=\[(x + 6)(x + 4)(x - 2)\]
\[ = \] \[{x^3} + \left( {6 + 4 - 2} \right){x^2} + \left( {6 \times 4 + 4 \times - 2 + - 2 \times 6} \right) + 6 \times 4 \times - 2\]
\[ = \] \[{x^3} + 8{x^2} + 4x - 48\]
\[(ii)\]\[(x - 6)(x - 4)(x + 2)\]
Using identity:
\[\left( {x + a} \right)\left( {x + b} \right)\left( {x + c} \right) = {x^3} + \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x + abc\]
Here, \[a = - 6\] \[b = - 4\]and \[c = 2\]
Substituting the value of \[a\]\[,\]\[b\] and \[c\]in the above identity we get
\[(x - 6)(x - 4)(x + 2)\]\[ = \]\[{x^3} - 8{x^2} + 4x + 48\]
\[(iii)\]\[(x + 6)(x - 4)(x - 2)\]
Using identity:
\[\left( {x + a} \right)\left( {x + b} \right)\left( {x + c} \right) = {x^3} + \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x + abc\]
Here, \[a = 6\] \[b = - 4\] and \[c = - 2\]
Substituting the value of \[a\]\[,\]\[b\] and \[c\]in the above identity we get
\[(x + 6)(x - 4)(x - 2)\]\[ = \] \[{x^3} + \left( {6 - 4 - 2} \right){x^2} + \left( {6 \times - 4 + - 4 \times - 2 + - 2 \times 6} \right)x + 6 \times - 4 \times - 2\]
\[ = \] \[{x^3} + \left( {6 - 4 - 2} \right){x^2} + \left( {6 \times - 4 + - 4 \times - 2 + - 2 \times 6} \right)x + 6 \times - 4 \times - 2\]
\[ = \] \[{x^3} - 28x + 48\]
\[(iv)\]\[(x - 6)(x + 4)(x - 2)\]
Using identity:
\[\left( {x + a} \right)\left( {x + b} \right)\left( {x + c} \right) = {x^3} + \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x + abc\]
Here, \[a = - 6\] \[b = 4\]and \[c = - 2\]
Substituting the value of \[a\]\[,\]\[b\] and \[c\]in the above identity we get
\[(x - 6)(x + 4)(x - 2)\]\[ = \] \[{x^3} + \left( { - 6 + 4 - 2} \right){x^2} + \left( { - 6 \times 4 + 4 \times - 2 + - 2 \times - 6} \right)x + - 6 \times 4 \times - 2\]
\[ = \] \[{x^3} - 4{x^2} - 20x + 48\]
Note: Avoid calculation mistakes because they can lead to an incorrect solution. We can cross-verify it by opening parenthesis and solving.
The student must note that there is an alternate way to solve the same question
Alternate way:
We will use simple distribution and algebraic properties to solve this question.
\[(i)\] \[(x + 6)(x + 4)(x - 2)\]
\[ = \] Firstly, multiply the first two terms we get
\[\left( {x + 6} \right)\left( {x + 4} \right) = {x^2} + 10x + 24\]
Now we will multiply it with the third term
\[x\left( {{x^2} + 10x + 24} \right) - 2\left( {{x^2} + 10x + 24} \right)\]
\[ = {x^3} + 10{x^2} + 24x - 2{x^2} - 20x + 48\]
Now combining the like term, we get
\[{x^3} + 8{x^2} + 4x + 48\]
\[(ii)\]\[(x - 6)(x - 4)(x + 2)\]
Firstly, multiply the first two terms we get
\[\left( {x - 6} \right)\left( {x - 4} \right) = {x^2} - 10x + 24\]
Now we will multiply it with the third term
\[x\left( {{x^2} - 10x + 24} \right) + 2({x^2} - 10x + 24)\]
\[ = {x^3} - 10{x^2} + 24x + 2{x^2} - 20x + 48\]
Now combining the like term, we get
\[ = \] \[{x^3} - 8{x^2} + 4x + 48\]
\[(iii)\] \[(x + 6)(x - 4)(x - 2)\]
Firstly, multiply the first two terms we get
\[\left( {x + 6} \right)\left( {x - 4} \right) = {x^2} + 2x - 24\]
Now we will multiply it with the third term
\[x\left( {{x^2} + 2x - 24} \right) - 2\left( {{x^2} + 2x - 24} \right)\]
\[ = {x^3} + 2{x^2} - 24x - 2{x^2} - 4x + 48\]
Now combining the like term, we get
\[{x^3} - 28x + 48\]
\[(iv)\] \[(x - 6)(x + 4)(x - 2)\]
Firstly, multiply the first two terms we get
\[\left( {x - 6} \right)\left( {x + 4} \right) = {x^2} - 2x - 24\]
Now we will multiply it with the third term
\[x\left( {{x^2} - 2x - 24} \right) - 2\left( {{x^2} - 2x + 24} \right)\]
\[{x^3} - 2{x^2} - 24x - 2{x^2} + 4x - 48\]
Now combining the like term, we get
\[{x^3} - 4{x^2} - 20x + 48\]
In order to solve this question, we are going to use identity \[\left( {x + a} \right)\left( {x + b} \right)\left( {x + c} \right) = {x^3} + \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x + abc\]
Therefore, \[\left( {x + a} \right)\left( {x + b} \right)\left( {x + c} \right) = \]\[{x^3}\]+ (Sum of the constant term) \[{x^2}\]+ (Sum of the constant term taken two at a time) \[x + \] product of constant terms.
We can also simplify using simple distribution and algebraic properties. We will multiply the first two terms first and then with the third term. We can use any method.
Complete answer:
We will use the above identity to simplify these question
\[(i)\]\[(x + 6)(x + 4)(x - 2)\]
Using identity:
\[\left( {x + a} \right)\left( {x + b} \right)\left( {x + c} \right) = {x^3} + \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x + abc\]
Here, \[a = 6\] \[b = 4\]and \[c = - 2\]
Substituting the value of \[a\]\[,\]\[b\] and \[c\]in the above identity we get
=\[(x + 6)(x + 4)(x - 2)\]
\[ = \] \[{x^3} + \left( {6 + 4 - 2} \right){x^2} + \left( {6 \times 4 + 4 \times - 2 + - 2 \times 6} \right) + 6 \times 4 \times - 2\]
\[ = \] \[{x^3} + 8{x^2} + 4x - 48\]
\[(ii)\]\[(x - 6)(x - 4)(x + 2)\]
Using identity:
\[\left( {x + a} \right)\left( {x + b} \right)\left( {x + c} \right) = {x^3} + \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x + abc\]
Here, \[a = - 6\] \[b = - 4\]and \[c = 2\]
Substituting the value of \[a\]\[,\]\[b\] and \[c\]in the above identity we get
\[(x - 6)(x - 4)(x + 2)\]\[ = \]\[{x^3} - 8{x^2} + 4x + 48\]
\[(iii)\]\[(x + 6)(x - 4)(x - 2)\]
Using identity:
\[\left( {x + a} \right)\left( {x + b} \right)\left( {x + c} \right) = {x^3} + \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x + abc\]
Here, \[a = 6\] \[b = - 4\] and \[c = - 2\]
Substituting the value of \[a\]\[,\]\[b\] and \[c\]in the above identity we get
\[(x + 6)(x - 4)(x - 2)\]\[ = \] \[{x^3} + \left( {6 - 4 - 2} \right){x^2} + \left( {6 \times - 4 + - 4 \times - 2 + - 2 \times 6} \right)x + 6 \times - 4 \times - 2\]
\[ = \] \[{x^3} + \left( {6 - 4 - 2} \right){x^2} + \left( {6 \times - 4 + - 4 \times - 2 + - 2 \times 6} \right)x + 6 \times - 4 \times - 2\]
\[ = \] \[{x^3} - 28x + 48\]
\[(iv)\]\[(x - 6)(x + 4)(x - 2)\]
Using identity:
\[\left( {x + a} \right)\left( {x + b} \right)\left( {x + c} \right) = {x^3} + \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x + abc\]
Here, \[a = - 6\] \[b = 4\]and \[c = - 2\]
Substituting the value of \[a\]\[,\]\[b\] and \[c\]in the above identity we get
\[(x - 6)(x + 4)(x - 2)\]\[ = \] \[{x^3} + \left( { - 6 + 4 - 2} \right){x^2} + \left( { - 6 \times 4 + 4 \times - 2 + - 2 \times - 6} \right)x + - 6 \times 4 \times - 2\]
\[ = \] \[{x^3} - 4{x^2} - 20x + 48\]
Note: Avoid calculation mistakes because they can lead to an incorrect solution. We can cross-verify it by opening parenthesis and solving.
The student must note that there is an alternate way to solve the same question
Alternate way:
We will use simple distribution and algebraic properties to solve this question.
\[(i)\] \[(x + 6)(x + 4)(x - 2)\]
\[ = \] Firstly, multiply the first two terms we get
\[\left( {x + 6} \right)\left( {x + 4} \right) = {x^2} + 10x + 24\]
Now we will multiply it with the third term
\[x\left( {{x^2} + 10x + 24} \right) - 2\left( {{x^2} + 10x + 24} \right)\]
\[ = {x^3} + 10{x^2} + 24x - 2{x^2} - 20x + 48\]
Now combining the like term, we get
\[{x^3} + 8{x^2} + 4x + 48\]
\[(ii)\]\[(x - 6)(x - 4)(x + 2)\]
Firstly, multiply the first two terms we get
\[\left( {x - 6} \right)\left( {x - 4} \right) = {x^2} - 10x + 24\]
Now we will multiply it with the third term
\[x\left( {{x^2} - 10x + 24} \right) + 2({x^2} - 10x + 24)\]
\[ = {x^3} - 10{x^2} + 24x + 2{x^2} - 20x + 48\]
Now combining the like term, we get
\[ = \] \[{x^3} - 8{x^2} + 4x + 48\]
\[(iii)\] \[(x + 6)(x - 4)(x - 2)\]
Firstly, multiply the first two terms we get
\[\left( {x + 6} \right)\left( {x - 4} \right) = {x^2} + 2x - 24\]
Now we will multiply it with the third term
\[x\left( {{x^2} + 2x - 24} \right) - 2\left( {{x^2} + 2x - 24} \right)\]
\[ = {x^3} + 2{x^2} - 24x - 2{x^2} - 4x + 48\]
Now combining the like term, we get
\[{x^3} - 28x + 48\]
\[(iv)\] \[(x - 6)(x + 4)(x - 2)\]
Firstly, multiply the first two terms we get
\[\left( {x - 6} \right)\left( {x + 4} \right) = {x^2} - 2x - 24\]
Now we will multiply it with the third term
\[x\left( {{x^2} - 2x - 24} \right) - 2\left( {{x^2} - 2x + 24} \right)\]
\[{x^3} - 2{x^2} - 24x - 2{x^2} + 4x - 48\]
Now combining the like term, we get
\[{x^3} - 4{x^2} - 20x + 48\]
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?

