
Simplify the following expression: $\sin {85^\circ} - \sin {35^\circ} - \cos {65^\circ}$
A. 0
B. 1
C. 2
D. 3
Answer
564k+ views
Hint: According to give in the question we have to simplify the given trigonometric expression $\sin {85^\circ} - \sin {35^\circ} - \cos {65^\circ}$so, first of all we have to solve the first two terms which are $\sin {85^\circ}$and $\sin {35^\circ}$with the help of the formula as given below:
Formula used: $ \Rightarrow \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}}
\right)....................(1)$
After applying the formula we will have to convert the given term $\cos {65^\circ}$ into $\sin
{25^\circ}$ with the help of the formula as given below:
$\cos ({90^\circ} - \theta ) = \sin \theta ...................(2)$
So with the help of the formula (2) we can convert $\cos {65^\circ}$ into $\sin {25^\circ}$ and by
eliminating both of the terms obtained in the expression we can simplify it.
Complete step-by-step answer:
Step 1: First of all we will solve the first two terms which are $\sin {85^\circ}$ and $\sin {35^\circ}$ with the
help of the formula (1) as mentioned in the solution hint.
$
= (\sin {85^\circ} - \sin {35^\circ}) - \cos {65^\circ} \\
= 2\left( {\cos \left( {\dfrac{{{{85}^\circ} + {{35}^\circ}}}{2}} \right)\sin \left( {\dfrac{{{{85}^\circ} -
{{35}^\circ}}}{2}} \right)} \right) - \cos {65^\circ} \\
$
On solving the expression obtained just above,
$
= 2\left( {\cos \left( {\dfrac{{{{120}^\circ}}}{2}} \right)\sin \left( {\dfrac{{{{50}^\circ}}}{2}} \right)} \right) -\cos {65^\circ} \\
= 2\left( {\cos {{60}^\circ}\sin {{25}^\circ}} \right) - \cos {65^\circ} \\
$
Step 2: Now, to solve the obtained trigonometric expression in step 2 we have to place the value of
$\cos {60^\circ}$ and as we know that $\cos {60^\circ} = \dfrac{1}{2}$
Hence,
$
= 2\left( {\dfrac{1}{2}\sin {{25}^\circ}} \right) - \cos {65^\circ} \\
= \sin {25^\circ} - \cos {65^\circ} \\
$
Step 3: Now, we have to convert the given term $\cos {65^\circ}$ into $\sin {25^\circ}$ with the help of the formula (2) as mentioned in the solution hint.
$
= \sin {25^\circ} - \cos {65^\circ} \\
= \sin {25^\circ} - \cos ({90^\circ} - {25^\circ}) \\
= \sin {25^\circ} - \sin {25^\circ} \\
= 0 \\
$
Final solution: Hence, with the help of the formula (1) and (2) we have simplified the given
trigonometric expression $\sin {85^\circ} - \sin {35^\circ} - \cos {65^\circ}$= 0.
Therefore option (A) is correct.
Note: It is necessary to solve the first two terms which are $\sin {85^\circ}$ and $\sin {35^\circ}$ first to obtain the solution easily of the given expression.
We can convert $\sin \theta $ to $\cos \theta $ and $\cos \theta $ to $\sin \theta $ with the help of the formula $\sin ({90^\circ} - \theta ) = \cos \theta $ and $\cos ({90^\circ} - \theta ) = \sin \theta $
Formula used: $ \Rightarrow \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}}
\right)....................(1)$
After applying the formula we will have to convert the given term $\cos {65^\circ}$ into $\sin
{25^\circ}$ with the help of the formula as given below:
$\cos ({90^\circ} - \theta ) = \sin \theta ...................(2)$
So with the help of the formula (2) we can convert $\cos {65^\circ}$ into $\sin {25^\circ}$ and by
eliminating both of the terms obtained in the expression we can simplify it.
Complete step-by-step answer:
Step 1: First of all we will solve the first two terms which are $\sin {85^\circ}$ and $\sin {35^\circ}$ with the
help of the formula (1) as mentioned in the solution hint.
$
= (\sin {85^\circ} - \sin {35^\circ}) - \cos {65^\circ} \\
= 2\left( {\cos \left( {\dfrac{{{{85}^\circ} + {{35}^\circ}}}{2}} \right)\sin \left( {\dfrac{{{{85}^\circ} -
{{35}^\circ}}}{2}} \right)} \right) - \cos {65^\circ} \\
$
On solving the expression obtained just above,
$
= 2\left( {\cos \left( {\dfrac{{{{120}^\circ}}}{2}} \right)\sin \left( {\dfrac{{{{50}^\circ}}}{2}} \right)} \right) -\cos {65^\circ} \\
= 2\left( {\cos {{60}^\circ}\sin {{25}^\circ}} \right) - \cos {65^\circ} \\
$
Step 2: Now, to solve the obtained trigonometric expression in step 2 we have to place the value of
$\cos {60^\circ}$ and as we know that $\cos {60^\circ} = \dfrac{1}{2}$
Hence,
$
= 2\left( {\dfrac{1}{2}\sin {{25}^\circ}} \right) - \cos {65^\circ} \\
= \sin {25^\circ} - \cos {65^\circ} \\
$
Step 3: Now, we have to convert the given term $\cos {65^\circ}$ into $\sin {25^\circ}$ with the help of the formula (2) as mentioned in the solution hint.
$
= \sin {25^\circ} - \cos {65^\circ} \\
= \sin {25^\circ} - \cos ({90^\circ} - {25^\circ}) \\
= \sin {25^\circ} - \sin {25^\circ} \\
= 0 \\
$
Final solution: Hence, with the help of the formula (1) and (2) we have simplified the given
trigonometric expression $\sin {85^\circ} - \sin {35^\circ} - \cos {65^\circ}$= 0.
Therefore option (A) is correct.
Note: It is necessary to solve the first two terms which are $\sin {85^\circ}$ and $\sin {35^\circ}$ first to obtain the solution easily of the given expression.
We can convert $\sin \theta $ to $\cos \theta $ and $\cos \theta $ to $\sin \theta $ with the help of the formula $\sin ({90^\circ} - \theta ) = \cos \theta $ and $\cos ({90^\circ} - \theta ) = \sin \theta $
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

