
Simplify the expression: $ \dfrac{{4 + \sqrt 5 }}{{4 - \sqrt 5 }} + \dfrac{{4 - \sqrt 5 }}{{4 + \sqrt 5 }} $
A. $ \dfrac{{42}}{{11}} $
B. $ \dfrac{{40}}{{11}} $
C. $ \dfrac{{39}}{{25}} $
D. $ \dfrac{{16}}{{25}} $
Answer
507k+ views
Hint: There are two types of numbers; real numbers are further divided into two parts – Rational and Irrational numbers. The numbers which cannot be expressed as a ratio of two integers are called irrational numbers. As there is an irrational number in the denominator of the given numbers so we rationalize them and then add the two numbers.
Complete step-by-step answer:
First we rational both the terms that are in addition with each other –
Rationalising $ \dfrac{{4 + \sqrt 5 }}{{4 - \sqrt 5 }} $ , we get –
$\Rightarrow \dfrac{{4 + \sqrt 5 }}{{4 - \sqrt 5 }} \times \dfrac{{4 + \sqrt 5 }}{{4 + \sqrt 5 }} \\
= \dfrac{{{{(4 + \sqrt 5 )}^2}}}{{{{(4)}^2} - {{(\sqrt 5 )}^2}}} \\
= \dfrac{{{{(4 + \sqrt 5 )}^2}}}{{16 - 5}} = \dfrac{{{{(4 + \sqrt 5 )}^2}}}{{11}} $
Rationalising $ \dfrac{{4 - \sqrt 5 }}{{4 + \sqrt 5 }} $ , we get -
$ \dfrac{{4 - \sqrt 5 }}{{4 + \sqrt 5 }} \times \dfrac{{4 - \sqrt 5 }}{{4 - \sqrt 5 }} \\
= \dfrac{{{{(4 - \sqrt 5 )}^2}}}{{{{(4)}^2} - {{(\sqrt 5 )}^2}}}\\
= \dfrac{{{{(4 - \sqrt 5 )}^2}}}{{16 - 5}} = \dfrac{{(4 - \sqrt 5 )}^2}{{11}} $
Now add the above two rationalized terms –
$\Rightarrow \dfrac{{{{(4 + \sqrt 5 )}^2}}}{{11}} + \dfrac{{{{(4 - \sqrt 5 )}^2}}}{{11}} \\
= \dfrac{{{{(4)}^2} + (\sqrt 5 ) + 2 \times 4 \times \sqrt 5 + {{(4)}^2} + {{(\sqrt 5 )}^2} - 2 \times 4 \times \sqrt 5 }}{{11}} \\
= \dfrac{{16 + 5 + 8\sqrt 5 + 16 + 5 - 8\sqrt 5 }}{{11}} = \dfrac{{42}}{{11}} $
Thus, $ \dfrac{{4 + \sqrt 5 }}{{4 - \sqrt 5 }} + \dfrac{{4 - \sqrt 5 }}{{4 + \sqrt 5 }} = \dfrac{{42}}{{11}} $
So, the correct answer is “Option A”.
Note: When we have a fraction in which the denominator is an irrational number, we rationalize it by multiplying both the numerator and denominator with the denominator but with opposite signs. We do rationalization to make the calculation simpler as the irrational term is converted to rational. We can also solve the question by simply taking LCM in the denominator as follows -
$ \dfrac{{4 + \sqrt 5 }}{{4 - \sqrt 5 }} + \dfrac{{4 - \sqrt 5 }}{{4 + \sqrt 5 }} = \dfrac{{(4 + \sqrt 5 )(4 - \sqrt 5 ) + (4 - \sqrt 5 )(4 - \sqrt 5 )}}{{(4 - \sqrt 5 )(4 + \sqrt 5 )}} = \dfrac{{{{(4 + \sqrt 5 )}^2} + {{(4 - \sqrt 5 )}^2}}}{{{{(4)}^2} - {{(\sqrt 5 )}^2}}} = \dfrac{{42}}{{11}} $
Complete step-by-step answer:
First we rational both the terms that are in addition with each other –
Rationalising $ \dfrac{{4 + \sqrt 5 }}{{4 - \sqrt 5 }} $ , we get –
$\Rightarrow \dfrac{{4 + \sqrt 5 }}{{4 - \sqrt 5 }} \times \dfrac{{4 + \sqrt 5 }}{{4 + \sqrt 5 }} \\
= \dfrac{{{{(4 + \sqrt 5 )}^2}}}{{{{(4)}^2} - {{(\sqrt 5 )}^2}}} \\
= \dfrac{{{{(4 + \sqrt 5 )}^2}}}{{16 - 5}} = \dfrac{{{{(4 + \sqrt 5 )}^2}}}{{11}} $
Rationalising $ \dfrac{{4 - \sqrt 5 }}{{4 + \sqrt 5 }} $ , we get -
$ \dfrac{{4 - \sqrt 5 }}{{4 + \sqrt 5 }} \times \dfrac{{4 - \sqrt 5 }}{{4 - \sqrt 5 }} \\
= \dfrac{{{{(4 - \sqrt 5 )}^2}}}{{{{(4)}^2} - {{(\sqrt 5 )}^2}}}\\
= \dfrac{{{{(4 - \sqrt 5 )}^2}}}{{16 - 5}} = \dfrac{{(4 - \sqrt 5 )}^2}{{11}} $
Now add the above two rationalized terms –
$\Rightarrow \dfrac{{{{(4 + \sqrt 5 )}^2}}}{{11}} + \dfrac{{{{(4 - \sqrt 5 )}^2}}}{{11}} \\
= \dfrac{{{{(4)}^2} + (\sqrt 5 ) + 2 \times 4 \times \sqrt 5 + {{(4)}^2} + {{(\sqrt 5 )}^2} - 2 \times 4 \times \sqrt 5 }}{{11}} \\
= \dfrac{{16 + 5 + 8\sqrt 5 + 16 + 5 - 8\sqrt 5 }}{{11}} = \dfrac{{42}}{{11}} $
Thus, $ \dfrac{{4 + \sqrt 5 }}{{4 - \sqrt 5 }} + \dfrac{{4 - \sqrt 5 }}{{4 + \sqrt 5 }} = \dfrac{{42}}{{11}} $
So, the correct answer is “Option A”.
Note: When we have a fraction in which the denominator is an irrational number, we rationalize it by multiplying both the numerator and denominator with the denominator but with opposite signs. We do rationalization to make the calculation simpler as the irrational term is converted to rational. We can also solve the question by simply taking LCM in the denominator as follows -
$ \dfrac{{4 + \sqrt 5 }}{{4 - \sqrt 5 }} + \dfrac{{4 - \sqrt 5 }}{{4 + \sqrt 5 }} = \dfrac{{(4 + \sqrt 5 )(4 - \sqrt 5 ) + (4 - \sqrt 5 )(4 - \sqrt 5 )}}{{(4 - \sqrt 5 )(4 + \sqrt 5 )}} = \dfrac{{{{(4 + \sqrt 5 )}^2} + {{(4 - \sqrt 5 )}^2}}}{{{{(4)}^2} - {{(\sqrt 5 )}^2}}} = \dfrac{{42}}{{11}} $
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which is the largest saltwater lake in India A Chilika class 8 social science CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

How many ounces are in 500 mL class 8 maths CBSE

How many ten lakhs are in one crore-class-8-maths-CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE
