
Simplify ${\left( {\dfrac{1}{{64}}} \right)^{ - \dfrac{2}{3}}}$ ?
Answer
559.5k+ views
Hint: Use the property of the exponents.
First apply the property of negative exponents that is, \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\], where $a \ne 0$.
Now, use ${a^{\dfrac{x}{y}}} = \sqrt[y]{{{a^x}}}$
We know that $\sqrt[3]{{4096}} = 16$therefore, $\dfrac{1}{{\sqrt[3]{{4096}}}} = \dfrac{1}{{16}}$
Complete step by step answer:
We have to simplify ${\left( {\dfrac{1}{{64}}} \right)^{ - \dfrac{2}{3}}}$.
First, apply the property of exponents;
For all nonzero element, \[{a^{ - x}} = \dfrac{1}{{{a^x}}}\].
Substitute $a = \dfrac{1}{{64}}$and $x = \dfrac{2}{3}$ into the formula,
\[{\left( {\dfrac{1}{{64}}} \right)^{ - \dfrac{2}{3}}} = \dfrac{1}{{{{\left( {\dfrac{1}{{64}}} \right)}^{\dfrac{2}{3}}}}} \ldots \ldots (1)\]
Now apply ${a^{\dfrac{x}{y}}} = \sqrt[y]{{{a^x}}}$to simplify \[{\left( {\dfrac{1}{{64}}} \right)^{\dfrac{2}{3}}}\].
Here $a = \dfrac{1}{{64}}$, $x = 2$ and $y = 3$.
${\left( {\dfrac{1}{{64}}} \right)^{\dfrac{2}{3}}} = \sqrt[3]{{{{\left( {\dfrac{1}{{64}}} \right)}^2}}}$
${\left( {\dfrac{1}{{64}}} \right)^{\dfrac{2}{3}}} = \sqrt[3]{{\dfrac{1}{{4096}}}}$
We know that $\sqrt[3]{{4096}} = 16$ therefore, $\dfrac{1}{{\sqrt[3]{{4096}}}} = \dfrac{1}{{16}}$.
$ \Rightarrow {\left( {\dfrac{1}{{64}}} \right)^{\dfrac{2}{3}}} = \dfrac{1}{{16}}$
Substitute ${\left( {\dfrac{1}{{64}}} \right)^{\dfrac{2}{3}}} = \dfrac{1}{{16}}$ into the equation $(1)$.
\[{\left( {\dfrac{1}{{64}}} \right)^{ - \dfrac{2}{3}}} = \dfrac{1}{{\dfrac{1}{{16}}}}\]
Simplify the expression further,
\[{\left( {\dfrac{1}{{64}}} \right)^{ - \dfrac{2}{3}}} = 16\]
Note: Here, is the list of the formulas of the exponents,
If \[n\;\] is a positive integer and \[x\] is any real number, then \[{x^n}\] corresponds to repeated multiplication
\[x \times x \times \cdots \times x = {x^n}\]
1.${x^a}{x^b} = {x^{a + b}}$
2.$\dfrac{{{x^a}}}{{{x^b}}} = {x^{a - b}}$
3.${({x^a})^b} = {x^{ab}}$
4.${x^0} = 1$
5.${x^{ - 1}} = \dfrac{1}{x}$
First apply the property of negative exponents that is, \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\], where $a \ne 0$.
Now, use ${a^{\dfrac{x}{y}}} = \sqrt[y]{{{a^x}}}$
We know that $\sqrt[3]{{4096}} = 16$therefore, $\dfrac{1}{{\sqrt[3]{{4096}}}} = \dfrac{1}{{16}}$
Complete step by step answer:
We have to simplify ${\left( {\dfrac{1}{{64}}} \right)^{ - \dfrac{2}{3}}}$.
First, apply the property of exponents;
For all nonzero element, \[{a^{ - x}} = \dfrac{1}{{{a^x}}}\].
Substitute $a = \dfrac{1}{{64}}$and $x = \dfrac{2}{3}$ into the formula,
\[{\left( {\dfrac{1}{{64}}} \right)^{ - \dfrac{2}{3}}} = \dfrac{1}{{{{\left( {\dfrac{1}{{64}}} \right)}^{\dfrac{2}{3}}}}} \ldots \ldots (1)\]
Now apply ${a^{\dfrac{x}{y}}} = \sqrt[y]{{{a^x}}}$to simplify \[{\left( {\dfrac{1}{{64}}} \right)^{\dfrac{2}{3}}}\].
Here $a = \dfrac{1}{{64}}$, $x = 2$ and $y = 3$.
${\left( {\dfrac{1}{{64}}} \right)^{\dfrac{2}{3}}} = \sqrt[3]{{{{\left( {\dfrac{1}{{64}}} \right)}^2}}}$
${\left( {\dfrac{1}{{64}}} \right)^{\dfrac{2}{3}}} = \sqrt[3]{{\dfrac{1}{{4096}}}}$
We know that $\sqrt[3]{{4096}} = 16$ therefore, $\dfrac{1}{{\sqrt[3]{{4096}}}} = \dfrac{1}{{16}}$.
$ \Rightarrow {\left( {\dfrac{1}{{64}}} \right)^{\dfrac{2}{3}}} = \dfrac{1}{{16}}$
Substitute ${\left( {\dfrac{1}{{64}}} \right)^{\dfrac{2}{3}}} = \dfrac{1}{{16}}$ into the equation $(1)$.
\[{\left( {\dfrac{1}{{64}}} \right)^{ - \dfrac{2}{3}}} = \dfrac{1}{{\dfrac{1}{{16}}}}\]
Simplify the expression further,
\[{\left( {\dfrac{1}{{64}}} \right)^{ - \dfrac{2}{3}}} = 16\]
Note: Here, is the list of the formulas of the exponents,
If \[n\;\] is a positive integer and \[x\] is any real number, then \[{x^n}\] corresponds to repeated multiplication
\[x \times x \times \cdots \times x = {x^n}\]
1.${x^a}{x^b} = {x^{a + b}}$
2.$\dfrac{{{x^a}}}{{{x^b}}} = {x^{a - b}}$
3.${({x^a})^b} = {x^{ab}}$
4.${x^0} = 1$
5.${x^{ - 1}} = \dfrac{1}{x}$
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science


