
Show that the three lines with direction cosines $\dfrac{12}{13}\dfrac{-3}{13},\dfrac{-4}{13};\dfrac{4}{13},\dfrac{12}{13},\dfrac{3}{13};\dfrac{3}{13},\dfrac{-4}{13},\dfrac{12}{13}$ are mutually perpendicular.
Answer
613.5k+ views
Hint: We will be using the basic concept of vectors and 3-D geometry to solve the problem. We will be using the method of finding angles between two lines in 3-D to further simplify the problem.
Complete step by step answer:
We know that the angle between two lines in 3-D is,
$\cos \theta =\dfrac{{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}}{\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}+{{c}_{1}}^{2}}\sqrt{{{a}_{2}}^{2}+{{b}_{2}}^{2}+{{c}_{2}}^{2}}}.............\left( 1 \right)$
Where ${{a}_{1}},{{b}_{1}},{{c}_{1}}\ and\ {{a}_{2}},{{b}_{2}},{{c}_{2}}$ are the direction ratios of two lines.
Now, we have to show three lines to be mutually perpendicular.
Let, first line be ${{L}_{1}}$ having direction cosines as,
${{l}_{1}}=\dfrac{12}{13},{{m}_{1}}=\dfrac{-3}{13},{{n}_{1}}=\dfrac{-4}{13}$
Second line be ${{L}_{2}}$ having direction cosines as,
${{l}_{2}}=\dfrac{4}{13},{{m}_{2}}=\dfrac{12}{13},{{n}_{2}}=\dfrac{3}{13}$
Third line be ${{L}_{3}}$ having direction cosines as,
${{l}_{2}}=\dfrac{4}{13},{{m}_{2}}=\dfrac{12}{13},{{n}_{2}}=\dfrac{3}{13}$
Now, from equation (1) we can see that for two lines to be perpendicular, $\theta $ show be $90{}^\circ $therefore,
$\begin{align}
& \cos 90=\dfrac{{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}}{\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}+{{c}_{1}}^{2}}\sqrt{{{a}_{2}}^{2}+{{b}_{2}}^{2}+{{c}_{2}}^{2}}}=0 \\
& {{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0 \\
\end{align}$
Now, we take ${{L}_{1}}\ \And \ {{L}_{2}}$ and will find the value of ${{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}$. So,
$\begin{align}
& {{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}=\dfrac{12}{13}\left( \dfrac{4}{13} \right)+\left( \dfrac{-3}{13} \right)\dfrac{12}{13}+\dfrac{-4}{13}\left( \dfrac{3}{13} \right) \\
& =\dfrac{48}{169}-\dfrac{36}{169}-\dfrac{12}{169} \\
& =\dfrac{48-48}{169} \\
& =0 \\
\end{align}$
Hence, ${{L}_{1}}\ \And \ {{L}_{2}}$ are perpendicular. Similarly we have to do for ${{L}_{2}},{{L}_{3}}\ \And \ {{L}_{3}},{{L}_{1}}$.
Now, we will repeat the same process for ${{L}_{2}},{{L}_{3}}$.
$\begin{align}
& {{l}_{2}}{{l}_{3}}+{{m}_{2}}{{m}_{3}}+{{n}_{2}}{{n}_{3}}=\dfrac{4}{13}\left( \dfrac{3}{13} \right)+\dfrac{12}{13}\left( \dfrac{-4}{13} \right)+\dfrac{3}{13}\left( \dfrac{12}{13} \right) \\
& =\dfrac{12}{169}-\dfrac{48}{169}+\dfrac{36}{169} \\
& =\dfrac{48-48}{169} \\
& =0 \\
\end{align}$
Hence, ${{L}_{2}},{{L}_{3}}$are perpendicular. Now, for ${{L}_{3}},{{L}_{1}}$.
$\begin{align}
& {{l}_{1}}{{l}_{3}}+{{m}_{1}}{{m}_{3}}+{{n}_{1}}{{n}_{3}}=\dfrac{12}{13}\left( \dfrac{3}{13} \right)+\left( \dfrac{-3}{13} \right)\left( \dfrac{-4}{13} \right)+\left( \dfrac{-4}{13} \right)\dfrac{12}{13} \\
& =\dfrac{36}{169}+\dfrac{12}{169}-\dfrac{48}{169} \\
& =\dfrac{48-48}{169} \\
& =0 \\
\end{align}$
Hence, ${{L}_{3}},{{L}_{1}}$ are also perpendicular. Since, ${{L}_{1}},{{L}_{2}};{{L}_{2}},{{L}_{3}};{{L}_{3}},{{L}_{1}}$ are perpendicular this shows that ${{L}_{1}},{{L}_{2}},{{L}_{3}}$ are mutually perpendicular or the three lines with given direction cosines are mutually perpendicular.
Note: These type of question can be easily solved if the formula to find angle between true lines is remembered that is,
$\cos \theta =\dfrac{{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}}{\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}+{{c}_{1}}^{2}}\sqrt{{{a}_{2}}^{2}+{{b}_{2}}^{2}+{{c}_{2}}^{2}}}$
Where ${{a}_{1}},{{b}_{1}},{{c}_{1}}\ and\ {{a}_{2}},{{b}_{2}},{{c}_{2}}$ are the direction cosines.
Complete step by step answer:
We know that the angle between two lines in 3-D is,
$\cos \theta =\dfrac{{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}}{\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}+{{c}_{1}}^{2}}\sqrt{{{a}_{2}}^{2}+{{b}_{2}}^{2}+{{c}_{2}}^{2}}}.............\left( 1 \right)$
Where ${{a}_{1}},{{b}_{1}},{{c}_{1}}\ and\ {{a}_{2}},{{b}_{2}},{{c}_{2}}$ are the direction ratios of two lines.
Now, we have to show three lines to be mutually perpendicular.
Let, first line be ${{L}_{1}}$ having direction cosines as,
${{l}_{1}}=\dfrac{12}{13},{{m}_{1}}=\dfrac{-3}{13},{{n}_{1}}=\dfrac{-4}{13}$
Second line be ${{L}_{2}}$ having direction cosines as,
${{l}_{2}}=\dfrac{4}{13},{{m}_{2}}=\dfrac{12}{13},{{n}_{2}}=\dfrac{3}{13}$
Third line be ${{L}_{3}}$ having direction cosines as,
${{l}_{2}}=\dfrac{4}{13},{{m}_{2}}=\dfrac{12}{13},{{n}_{2}}=\dfrac{3}{13}$
Now, from equation (1) we can see that for two lines to be perpendicular, $\theta $ show be $90{}^\circ $therefore,
$\begin{align}
& \cos 90=\dfrac{{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}}{\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}+{{c}_{1}}^{2}}\sqrt{{{a}_{2}}^{2}+{{b}_{2}}^{2}+{{c}_{2}}^{2}}}=0 \\
& {{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0 \\
\end{align}$
Now, we take ${{L}_{1}}\ \And \ {{L}_{2}}$ and will find the value of ${{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}$. So,
$\begin{align}
& {{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}=\dfrac{12}{13}\left( \dfrac{4}{13} \right)+\left( \dfrac{-3}{13} \right)\dfrac{12}{13}+\dfrac{-4}{13}\left( \dfrac{3}{13} \right) \\
& =\dfrac{48}{169}-\dfrac{36}{169}-\dfrac{12}{169} \\
& =\dfrac{48-48}{169} \\
& =0 \\
\end{align}$
Hence, ${{L}_{1}}\ \And \ {{L}_{2}}$ are perpendicular. Similarly we have to do for ${{L}_{2}},{{L}_{3}}\ \And \ {{L}_{3}},{{L}_{1}}$.
Now, we will repeat the same process for ${{L}_{2}},{{L}_{3}}$.
$\begin{align}
& {{l}_{2}}{{l}_{3}}+{{m}_{2}}{{m}_{3}}+{{n}_{2}}{{n}_{3}}=\dfrac{4}{13}\left( \dfrac{3}{13} \right)+\dfrac{12}{13}\left( \dfrac{-4}{13} \right)+\dfrac{3}{13}\left( \dfrac{12}{13} \right) \\
& =\dfrac{12}{169}-\dfrac{48}{169}+\dfrac{36}{169} \\
& =\dfrac{48-48}{169} \\
& =0 \\
\end{align}$
Hence, ${{L}_{2}},{{L}_{3}}$are perpendicular. Now, for ${{L}_{3}},{{L}_{1}}$.
$\begin{align}
& {{l}_{1}}{{l}_{3}}+{{m}_{1}}{{m}_{3}}+{{n}_{1}}{{n}_{3}}=\dfrac{12}{13}\left( \dfrac{3}{13} \right)+\left( \dfrac{-3}{13} \right)\left( \dfrac{-4}{13} \right)+\left( \dfrac{-4}{13} \right)\dfrac{12}{13} \\
& =\dfrac{36}{169}+\dfrac{12}{169}-\dfrac{48}{169} \\
& =\dfrac{48-48}{169} \\
& =0 \\
\end{align}$
Hence, ${{L}_{3}},{{L}_{1}}$ are also perpendicular. Since, ${{L}_{1}},{{L}_{2}};{{L}_{2}},{{L}_{3}};{{L}_{3}},{{L}_{1}}$ are perpendicular this shows that ${{L}_{1}},{{L}_{2}},{{L}_{3}}$ are mutually perpendicular or the three lines with given direction cosines are mutually perpendicular.
Note: These type of question can be easily solved if the formula to find angle between true lines is remembered that is,
$\cos \theta =\dfrac{{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}}{\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}+{{c}_{1}}^{2}}\sqrt{{{a}_{2}}^{2}+{{b}_{2}}^{2}+{{c}_{2}}^{2}}}$
Where ${{a}_{1}},{{b}_{1}},{{c}_{1}}\ and\ {{a}_{2}},{{b}_{2}},{{c}_{2}}$ are the direction cosines.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

