
Show that the function \[f(x)=\left\{ \begin{align}
&|2x-3|[x],\;x \geqslant1 \\
& \sin \left( {\dfrac{{\pi x}}{2}} \right),\;x < 1\\
\end{align} \right.\]
is continuous but not differentiable at \[x = 1\].
Answer
503.1k+ views
Hint:In this problem we have to show that the given function is continuous but not differentiable at \[x = 1\]. We will first check for continuity at \[x = 1\] by verifying the left hand limit and the right hand limit . Then we check the differentiability at \[x = 1\] by verifying the left hand derivative and right hand derivative.
Complete step by step answer:
To check continuity at a point \[x = a\] we will verify ,
\[\mathop {\lim }\limits_{x \to {a^ + }} f(x) = \mathop {\lim }\limits_{x \to {a^ - }} f(x) = f(a)\]
For differentiability at \[x = a\] we verify
\[\mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{f(x) - f(1)}}{{x - 1}} = f(0)\]
A function \[f(x)\] is said to be continuous at a point \[x = a\] of its domain if \[\mathop {\lim }\limits_{x \to a} f(x)\] exist and equal to \[f(a)\]. Thus \[f(x)\] is continuous at a point \[x = a\] if \[\mathop {\lim }\limits_{x \to {a^ + }} f(x) = \mathop {\lim }\limits_{x \to {a^ - }} f(x) = f(a)\].If the function is not continuous then it is said to be discontinuous at that point.
The given function is
\[f(x)=\left\{ \begin{align}
&|2x-3|[x],\;x \geqslant1 \\
& \sin \left( {\dfrac{{\pi x}}{2}} \right),\;x < 1\\
\end{align} \right.\]
First we check whether the function is continuous at \[x = 1\].
Hence we find right hand limit as
i.e. \[\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{h \to 0} f(1 + h)\] --------(1)
since, \[f(x) = 2x - 3|[x] , x \geqslant 1\] where, \[x = (1 + h)\]
we can apply the values in equation (1), then we can get
\[\mathop {\lim }\limits_{x \to {1^ + }} f(2x - 3|[x] ) = \mathop {\lim }\limits_{h \to 0} |2(1 + h) - 3|[1 + h]\]
\[ = \mathop {\lim }\limits_{h \to 0} |2h - 1|[1 + h]\]
on solving the greatest integer function\[[1 + h] = 1\] and putting the limit into the function , we have
\[\mathop {\lim }\limits_{x \to {1^ + }} f(x) = |2(0) - 1|(1) = 1\]
Now we find the left hand limit as follow
\[\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{h \to 0} f(1 - h) \\
\Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{h \to 0} \sin \left( {\dfrac{{\pi (1 - h)}}{2}} \right) \]
Putting the limit into the function we get
\[\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{h \to 0} \sin \left( {\dfrac{{\pi (1 - 0)}}{2}} \right) = \sin \dfrac{\pi }{2} = 1 \]
Now we find the value of function at \[x = 1\].
\[f(1) = |2(1) - 3|[1] = 1\]
Hence we see that \[\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} f(x) = f(1)\]
Hence, the given function is continuous at \[x = 1\].
Now we check for differentiability at \[x = 1\].
We find left hand derivative at \[x = 1\]
i.e. \[\mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 - h) - f(1)}}{{(1 - h) - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \dfrac{{\pi (1 - h)}}{2} - 1}}{{ - h}}\]
The above function is of zero by zero form so solving using the L hospital rule we differentiate the numerator and denominator. Thus we get
\[\mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{( - 1)\cos \dfrac{{\pi (1 - h)}}{2}}}{{( - 1)}} = \mathop {\lim }\limits_{h \to 0} \cos \dfrac{{\pi (1 - h)}}{2}\]
Putting the limits we get \[\mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{h \to 0} \cos \dfrac{{\pi (1 - 0)}}{2} = 0\]
Now we find the right hand limit as follow
\[\mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 + h) - f(1)}}{{(1 + h) - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{|2h - 1|[1 + h] - 1}}{h}\]
On solving by put the limits, we have
\[\therefore \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{|2h - 1|(1) - 1}}{h} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - 2h - 1}}{h} = - 2\].
Hence we see that the right hand derivative does not equal the left hand derivative.Therefore the given function is not differentiable.
Note:Every differentiable function is continuous but not vice -versa. Greatest integer function gives the value of the integer less than equal to the given number. for example : \[[2.15] = 2\]. Modulus of function gives the positive values of the number. for example: \[| - 2| = 2\].
Complete step by step answer:
To check continuity at a point \[x = a\] we will verify ,
\[\mathop {\lim }\limits_{x \to {a^ + }} f(x) = \mathop {\lim }\limits_{x \to {a^ - }} f(x) = f(a)\]
For differentiability at \[x = a\] we verify
\[\mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{f(x) - f(1)}}{{x - 1}} = f(0)\]
A function \[f(x)\] is said to be continuous at a point \[x = a\] of its domain if \[\mathop {\lim }\limits_{x \to a} f(x)\] exist and equal to \[f(a)\]. Thus \[f(x)\] is continuous at a point \[x = a\] if \[\mathop {\lim }\limits_{x \to {a^ + }} f(x) = \mathop {\lim }\limits_{x \to {a^ - }} f(x) = f(a)\].If the function is not continuous then it is said to be discontinuous at that point.
The given function is
\[f(x)=\left\{ \begin{align}
&|2x-3|[x],\;x \geqslant1 \\
& \sin \left( {\dfrac{{\pi x}}{2}} \right),\;x < 1\\
\end{align} \right.\]
First we check whether the function is continuous at \[x = 1\].
Hence we find right hand limit as
i.e. \[\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{h \to 0} f(1 + h)\] --------(1)
since, \[f(x) = 2x - 3|[x] , x \geqslant 1\] where, \[x = (1 + h)\]
we can apply the values in equation (1), then we can get
\[\mathop {\lim }\limits_{x \to {1^ + }} f(2x - 3|[x] ) = \mathop {\lim }\limits_{h \to 0} |2(1 + h) - 3|[1 + h]\]
\[ = \mathop {\lim }\limits_{h \to 0} |2h - 1|[1 + h]\]
on solving the greatest integer function\[[1 + h] = 1\] and putting the limit into the function , we have
\[\mathop {\lim }\limits_{x \to {1^ + }} f(x) = |2(0) - 1|(1) = 1\]
Now we find the left hand limit as follow
\[\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{h \to 0} f(1 - h) \\
\Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{h \to 0} \sin \left( {\dfrac{{\pi (1 - h)}}{2}} \right) \]
Putting the limit into the function we get
\[\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{h \to 0} \sin \left( {\dfrac{{\pi (1 - 0)}}{2}} \right) = \sin \dfrac{\pi }{2} = 1 \]
Now we find the value of function at \[x = 1\].
\[f(1) = |2(1) - 3|[1] = 1\]
Hence we see that \[\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} f(x) = f(1)\]
Hence, the given function is continuous at \[x = 1\].
Now we check for differentiability at \[x = 1\].
We find left hand derivative at \[x = 1\]
i.e. \[\mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 - h) - f(1)}}{{(1 - h) - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \dfrac{{\pi (1 - h)}}{2} - 1}}{{ - h}}\]
The above function is of zero by zero form so solving using the L hospital rule we differentiate the numerator and denominator. Thus we get
\[\mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{( - 1)\cos \dfrac{{\pi (1 - h)}}{2}}}{{( - 1)}} = \mathop {\lim }\limits_{h \to 0} \cos \dfrac{{\pi (1 - h)}}{2}\]
Putting the limits we get \[\mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{h \to 0} \cos \dfrac{{\pi (1 - 0)}}{2} = 0\]
Now we find the right hand limit as follow
\[\mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 + h) - f(1)}}{{(1 + h) - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{|2h - 1|[1 + h] - 1}}{h}\]
On solving by put the limits, we have
\[\therefore \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{|2h - 1|(1) - 1}}{h} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - 2h - 1}}{h} = - 2\].
Hence we see that the right hand derivative does not equal the left hand derivative.Therefore the given function is not differentiable.
Note:Every differentiable function is continuous but not vice -versa. Greatest integer function gives the value of the integer less than equal to the given number. for example : \[[2.15] = 2\]. Modulus of function gives the positive values of the number. for example: \[| - 2| = 2\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

